This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120156 #10 Sep 01 2023 02:18:59 %S A120156 11,15,20,27,36,48,64,85,113,151,201,268,358,477,636,848,1131,1508, %T A120156 2010,2680,3574,4765,6353,8471,11295,15060,20080,26773,35697,47596, %U A120156 63462,84616,112821,150428,200571,267428,356570,475427,633903,845204 %N A120156 a(n) = 11 + floor((2 + Sum_{j=1..n-1} a(j))/3). %H A120156 G. C. Greubel, <a href="/A120156/b120156.txt">Table of n, a(n) for n = 1..1000</a> %t A120156 A120156[n_]:= A120156[n]= 11 +Quotient[2+Sum[A120156[k], {k,n-1}], 3]; %t A120156 Table[A120156[n], {n,60}] (* _G. C. Greubel_, Jul 06 2023 *) %o A120156 (Magma) %o A120156 function f(n, a, b) %o A120156 t:=0; %o A120156 for k in [1..n-1] do %o A120156 t+:= a+Floor((b+t)/3); %o A120156 end for; %o A120156 return t; %o A120156 end function; %o A120156 g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >; %o A120156 A120156:= func< n | g(n, 11, 2) >; %o A120156 [A120156(n): n in [1..60]]; // _G. C. Greubel_, Jul 06 2023 %o A120156 (SageMath) %o A120156 @CachedFunction %o A120156 def A120156(n): return 11 +(2+sum(A120156(k) for k in range(1, n)))//3 %o A120156 [A120156(n) for n in range(1, 61)] # _G. C. Greubel_, Jul 06 2023 %Y A120156 Cf. A072493, A073941, A112088. %K A120156 nonn %O A120156 1,1 %A A120156 _Graeme McRae_, Jun 10 2006