This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120161 #14 Mar 07 2024 11:13:39 %S A120161 2,2,3,4,5,6,7,9,11,14,18,22,28,35,43,54,68,85,106,132,165,207,258, %T A120161 323,404,505,631,789,986,1232,1540,1925,2407,3008,3760,4700,5875,7344, %U A120161 9180,11475,14344,17930,22412,28015,35019,43774,54717,68397,85496,106870 %N A120161 a(n) = 2 + floor((1 + Sum_{j=1..n-1} a(j))/4). %H A120161 G. C. Greubel, <a href="/A120161/b120161.txt">Table of n, a(n) for n = 1..1000</a> %t A120161 f[s_]:= Append[s, Floor[(9 +Plus @@ s)/4]]; Nest[f, {2}, 49] (* _Robert G. Wilson v_, Jul 08 2006 *) %o A120161 (Magma) %o A120161 function f(n, a, b) %o A120161 t:=0; %o A120161 for k in [1..n-1] do %o A120161 t+:= a+Floor((b+t)/4); %o A120161 end for; %o A120161 return t; %o A120161 end function; %o A120161 g:= func< n, a, b | f(n+1,a,b)-f(n,a,b) >; %o A120161 A120161:= func< n | g(n,2,1) >; %o A120161 [A120161(n): n in [1..60]]; // _G. C. Greubel_, Sep 02 2023 %o A120161 (SageMath) %o A120161 @CachedFunction %o A120161 def f(n,p,q): return p + (q + sum(f(k,p,q) for k in range(1,n)))//4 %o A120161 def A120161(n): return f(n,2,1) %o A120161 [A120161(n) for n in range(1,61)] # _G. C. Greubel_, Sep 02 2023 %Y A120161 Cf. A072493, A073941, A112088. %K A120161 nonn %O A120161 1,1 %A A120161 _Graeme McRae_, Jun 10 2006 %E A120161 More terms from _Robert G. Wilson v_, Jul 08 2006 %E A120161 Name edited by _G. C. Greubel_, Sep 02 2023