This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120173 #7 Dec 26 2023 11:23:16 %S A120173 4,5,6,7,9,10,12,15,18,21,26,31,37,44,53,64,77,92,110,132,159,191,229, %T A120173 275,330,396,475,570,684,821,985,1182,1418,1702,2042,2451,2941,3529, %U A120173 4235,5082 %N A120173 a(n) = 4 + floor((3 + Sum_{j=1..n-1} a(j))/5). %H A120173 G. C. Greubel, <a href="/A120173/b120173.txt">Table of n, a(n) for n = 1..10000</a> %t A120173 A120173[n_]:= A120173[n]= 4 +Floor[(3 +Sum[a[j], {j,n-1}])/5]; %t A120173 Table[A120173[n], {n, 60}] (* _G. C. Greubel_, Dec 26 2023 *) %o A120173 (Magma) %o A120173 function f(n, a, b) %o A120173 t:=0; %o A120173 for k in [1..n-1] do %o A120173 t+:= a+Floor((b+t)/5); %o A120173 end for; %o A120173 return t; %o A120173 end function; %o A120173 g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >; %o A120173 A120173:= func< n | g(n, 4, 3) >; %o A120173 [A120173(n): n in [1..60]]; // _G. C. Greubel_, Dec 26 2023 %o A120173 (SageMath) %o A120173 @CachedFunction %o A120173 def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//5 %o A120173 def A120173(n): return f(n, 4, 3) %o A120173 [A120173(n) for n in range(1, 61)] # _G. C. Greubel_, Dec 26 2023 %Y A120173 Cf. A073941, A072493, A112088. %K A120173 nonn %O A120173 1,1 %A A120173 _Graeme McRae_, Jun 10 2006