This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120210 #18 Nov 27 2015 05:44:10 %S A120210 20,30,156,600,420,1640,3660,520,2590,7140,1224,10920,8190,20880, %T A120210 32580,4872,19998,5220,48620,69960,3150,41470,97656,132860,19080, %U A120210 76830,176820,230880,131070,12740,296480,11100,375156,52360,209950,468540,64080 %N A120210 Integer squares y from the smallest solutions of y^2 = x*(a^N - x)*(b^N + x) (elliptic line, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a. %C A120210 The case x congruent to 0 mod b or b congruent to 0 mod x is frequent (e.g., A120212). Note that the triples a = 3, b = 4, c = 5 and a = 4, b = 3, c = 5 provide a different result for (x, y). %C A120210 The natural solution is y = c * b * (c-b) and x = b * (c-b) with c hypotenuse in the triple. - _Giorgio Balzarotti_, Jul 19 2006 %D A120210 G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47. %e A120210 First primitive Pythagorean triple: 3, 4, 5. %e A120210 Weierstrass equation: y^2 = x*(3^2 - x)*(4^2 + x). %e A120210 Smallest integer solution: (x, y) = (4,20). %e A120210 First element in the sequence: y = 20. %p A120210 flag:=1; x:=0; # a, b, c primitive Pythagorean triple %p A120210 while flag=1 do x:=x+1; y2:=x*(a^2-x)*(x+b^2); if (floor(sqrt(y2)))^2=y2 then print(sqrt(y2)); flag:=0; fi; od; %Y A120210 Cf. A009003, A020884, A120211-A120213. %K A120210 nonn %O A120210 1,1 %A A120210 _Giorgio Balzarotti_, _Paolo P. Lava_, Jun 10 2006