This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120211 #4 Mar 31 2012 14:45:05 %S A120211 4,6,12,24,15,40,60,40,70,84,72,56,126,144,180,168,198,180,220,264, %T A120211 126,286,312,364,360,390,420,480,510,49,544,300,612,616,646,684,720, %U A120211 760,288,798,840,924,726,966,700,1012,1104,990,1150,1200 %N A120211 x values giving the smallest integer solutions of y^2 = x*(a^N - x)*( b^N + x) (elliptic curve, Weierstrass equation) with a and b legs in primitive Pythagorean triangles and N = 2. Sequence ordered in increasing values of leg a. Relevant y values in A120210. %D A120211 G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 47. %e A120211 First primitive Pythagorean triad: 3, 4, 5 %e A120211 Weierstrass equation. y^2 = x*( 3^2 - x)*( 4^2 + x) %e A120211 Smallest integer solution (x, y) = (4,20) %e A120211 First element in the sequence x = 4 %p A120211 flag :=1;x:=0; # a, b, c primitive Pythagorean triad while flag =1 do x:=x+1; y2:= x*( a^2 - x)*(x+b^2); if ((floor(sqrt(y2)))^2=y2)then print( x);flag :=0;fi; od; %Y A120211 Cf. A009003, A020884, A120210-A120213. %K A120211 nonn %O A120211 1,1 %A A120211 Giorgio Balzarotti, _Paolo P. Lava_, Jun 10 2006