This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120257 #15 Jan 13 2022 06:15:50 %S A120257 1,2,-1,3,-6,-1,4,-20,-20,1,5,-50,-175,70,1,6,-105,-980,1764,252,-1,7, %T A120257 -196,-4116,24696,19404,-924,-1,8,-336,-14112,232848,731808,-226512, %U A120257 -3432,1,9,-540,-41580,1646568,16818516,-24293412,-2760615,12870,1,10,-825,-108900,9343620,267227532,-1447482465 %N A120257 Triangle of Hankel transforms of certain binomial sums. %C A120257 Row k is the Hankel transform of Sum_{j=0..n} binomial(k+j, j). Absolute value is reversal of A103905. Diagonal and subdiagonals are essentially signed versions of the central coefficients of certain generalized Pascal-Narayana triangles (A007318, A001263, A056939, A056940, A056941). %F A120257 T(n, k) = (cos(Pi*k/2) - sin(Pi*k/2)) * Product_{j=0..n-k-1} C(2k+2+j, k+1)/C(k+1+j, j). %e A120257 Triangle begins %e A120257 1; %e A120257 2, -1; %e A120257 3, -6, -1; %e A120257 4, -20, -20, 1; %e A120257 5, -50, -175, 70, 1; %e A120257 6, -105, -980, 1764, 252, -1; %e A120257 7, -196, -4116, 24696, 19404, -924, -1; %e A120257 8, -336, -14112, 232848, 731808, -226512, -3432, 1; %o A120257 (PARI) T(n, k) = (-1)^((k+1)\2) * prod(j=0, n-k-1, binomial(2*k+2+j, k+1)/binomial(k+1+j, j)); \\ _Michel Marcus_, Jan 13 2022 %Y A120257 Cf. A120258. %K A120257 easy,sign,tabl %O A120257 0,2 %A A120257 _Paul Barry_, Jun 13 2006