cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120260 Diagonal sums of number triangle A120258.

Original entry on oeis.org

1, 1, 2, 3, 8, 24, 92, 432, 2740, 23822, 264185, 3545166, 59474514, 1343942004, 41179884383, 1593533376361, 74665098131246, 4404743069577837, 351138858279113987, 37740395752334771775, 5093113605218543006445
Offset: 0

Views

Author

Paul Barry, Jun 13 2006

Keywords

Programs

  • Mathematica
    Table[Sum[Product[Binomial[2*n-4*k+j, n-2*k]/Binomial[n-2*k+j, j], {j,0,k-1}], {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Aug 29 2023 *)
    Table[Sum[BarnesG[1 + k] * BarnesG[2 - 2*k + n]^2 * BarnesG[1 - 3*k + 2*n] * Gamma[1 - 4*k + 2*n] / (BarnesG[1 - k + n]^2 * BarnesG[2 - 4*k + 2*n] * Gamma[1 - 2*k + n]^2), {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 29 2023 *)

Formula

a(n)=sum{k=0..floor(n/2), Product{j=0..k-1, C(2n-4k+j, n-2k)/C(n-2k+j, j)}}
Limit_{n->oo} a(n)^(1/n^2) = r^(r^2/2) * (2-3*r)^((2-3*r)^2/2) / (2^(2*(1-2*r)^2) * (1-r)^((1-r)^2) * (1-2*r)^((1-2*r)^2)) = 1.133380884076924860904704854418..., where r = 0.201760656726887011996310570327419178... is the root of the equation 2^(8-16*r) * (2-3*r)^(-6+9*r) * (1-2*r)^(4-8*r) * (1-r)^(2-2*r) * r^r = 1. - Vaclav Kotesovec, Aug 29 2023