cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120261 Number of primitive triangles with integer sides a<=b<=c and inradius n; primitive means gcd(a, b, c) = 1.

Original entry on oeis.org

1, 4, 10, 11, 13, 28, 17, 26, 31, 31, 20, 77, 28, 46, 67, 40, 28, 100, 26, 72, 120, 62, 32, 139, 44, 53, 71, 118, 32, 202, 35, 70, 135, 73, 97, 211, 33, 80, 130, 134, 36, 284, 45, 141, 183, 78, 50, 226, 68, 112, 150, 146, 38, 173, 150, 219, 182, 80, 38, 468, 36, 82
Offset: 1

Views

Author

David W. Wilson, Jun 13 2006

Keywords

Examples

			a(3)=10 because 10 triangles have coprime integer sides and inradius 3, namely (7,24,25) (7,65,68) (8,15,17) (11,13,20) (12,55,65) (13,40,51) (15,28,41) (16,25,39) (19,20,37) (11,100,109).
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

See A120062 for sequences related to integer-sided triangles with integer inradius n.