This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120263 #17 Jan 26 2023 10:05:47 %S A120263 1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,5,3,1,1,1,1,1,1,1,1,1,1,1,11,1, %T A120263 1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1, %U A120263 1,1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,25,1,1,1,1 %N A120263 Ratio of the numerator of n*HarmonicNumber[n] to the numerator of HarmonicNumber[n]: A096617(n)/A001008(n). %C A120263 a(n) is not equal to 1 when n belongs to A074791 - numbers n such that n does not divide the denominator of the n-th harmonic number. %C A120263 a(n) is almost always equal to 1 except for n=6,18,20,21,33,42,54,.. when a(n) seems to be equal to a prime divisor of n. %C A120263 a(n) could be equal to a squared prime divisor of n as for n=100,294,500,847,.. %H A120263 G. C. Greubel, <a href="/A120263/b120263.txt">Table of n, a(n) for n = 1..10000</a> %F A120263 a(n) = A096617(n)/A001008(n) = numerator[n*Sum[1/i,{i,1,n}]] / numerator[Sum[1/i,{i,1,n}]]. %F A120263 a(n) = n / gcd(denominator(H(n)),n), where H(n) = sum(1/k, k=1..n). [_Gary Detlefs_, Sep 05 2011] %F A120263 a(n) = A096617(n)*A110566(n)/A025529(n). [_Arkadiusz Wesolowski_, Mar 29 2012] %t A120263 Numerator[Table[n*Sum[1/i,{i,1,n}],{n,1,500}]]/Numerator[Table[Sum[1/i,{i,1,n}],{n,1,500}]] %o A120263 (PARI) {h(n) = sum(k=1,n,1/k)}; %o A120263 for(n=1,100, print1(numerator(n*h(n))/numerator(h(n)), ", ")) \\ _G. C. Greubel_, Sep 01 2018 %o A120263 (Magma) [Numerator(n*HarmonicNumber(n))/Numerator(HarmonicNumber(n)): n in [1..100]]; // _G. C. Greubel_, Sep 01 2018 %Y A120263 Cf. A096617, A001008, A074791. %K A120263 frac,nonn %O A120263 1,6 %A A120263 _Alexander Adamchuk_, Jun 26 2006