This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120269 #26 Sep 08 2022 08:45:25 %S A120269 1,82,51331,123296356,9988505461,146251554055126,4177234784807204311, %T A120269 4177316109293528392,348897735816424941428857, %U A120269 45469045689642442391390873722,45469276109166591994111574347 %N A120269 Numerator of Sum_{k=1..n} 1/(2k-1)^4. %C A120269 a((p-1)/2) is divisible by prime p > 5. %C A120269 Denominators are in A128493. %C A120269 The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k-1)^4, for n -> infinity, is (Pi^4)/96 = (1 - 1/2^4)*zeta(4), which is approximately 1.014678032. %C A120269 r(n) = (Psi(3, 1/2) - Psi(3, n+1/2))/(3!*2^4) for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(3, 1/2) = 3!*15*zeta(4) = Pi^4. - _Jean-François Alcover_, Dec 02 2013 %H A120269 G. C. Greubel, <a href="/A120269/b120269.txt">Table of n, a(n) for n = 1..293</a> %H A120269 W. Lang, <a href="/A120269/a120269.txt">Rationals and limit</a>. %t A120269 Numerator[Table[Sum[1/(2k-1)^4,{k,1,n}],{n,1,20}]] %t A120269 Table[(PolyGamma[3, 1/2] - PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* _Jean-François Alcover_, Dec 02 2013 *) %o A120269 (PARI) for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^4)), ", ")) \\ _G. C. Greubel_, Aug 23 2018 %o A120269 (Magma) [Numerator((&+[1/(2*k-1)^4: k in [1..n]])): n in [1..20]]; // _G. C. Greubel_, Aug 23 2018 %Y A120269 Cf. A007410, A013662, A025550. %K A120269 nonn,frac %O A120269 1,2 %A A120269 _Alexander Adamchuk_, Jul 01 2006