This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120275 #17 Nov 20 2015 05:11:06 %S A120275 5,3,3,7,3,3,7,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %T A120275 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A120275 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 %N A120275 Smallest prime factor of the odd Catalan number A038003(n). %C A120275 A038003(n) = binomial(2^(n+1)-2, 2^n-1)/(2^n). %C A120275 a(n) <> 3 iff the base-3 representation of 2^n-1 has no 2's. Conjecture: this only occurs for n = 2, 5, 8. I verified it up to n = 10^4. - _Robert Israel_, Nov 18 2015 %e A120275 a(2) = 5 because A038003(2) = 5. %e A120275 a(3) = 3 because A038003(3) = 429 = 3*11*13. %p A120275 f:= proc(n) local m; %p A120275 m:= 2^n-1; %p A120275 if has(convert(m,base,3),2) then return 3 fi; %p A120275 min(numtheory:-factorset(binomial(2*m,m)/(m+1))); %p A120275 end proc: %p A120275 seq(f(n),n=2..1000); # _Robert Israel_, Nov 18 2015 %t A120275 f[n_] := Block[{p = 2, m = Binomial[2^(n+1)-2, 2^n-1]/(2^n)}, While[Mod[m, p] > 0, p = NextPrime@ p]; p]; Array[f, 27, 2] (* _Robert G. Wilson v_, Nov 14 2015 *) %Y A120275 Cf. A038003, A000108. %K A120275 nonn %O A120275 2,1 %A A120275 _Alexander Adamchuk_, Jul 04 2006 %E A120275 a(16)-a(28) from _Robert G. Wilson v_, Nov 14 2015 %E A120275 a(29)-a(86) from _Robert Israel_, Nov 18 2015