This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120289 #12 Jun 28 2022 15:28:01 %S A120289 5,19,47,79,109 %N A120289 Primes p such that p divides the numerator of Sum_{k=1..n-1} 1/prime(k)^p, where p = prime(n). %C A120289 Next term > 1690. - _Michael S. Branicky_, Jun 27 2022 %e A120289 a(1) = 5 because prime 5 divides 275 = numerator(1/2^5 + 1/3^5). %e A120289 Sum_{k=1..n-1} 1/prime(k)^prime(n) begins: %e A120289 n=2: 1/2^3 = 1/8; %e A120289 n=3: 1/2^5 + 1/3^5 = 275/7776; %e A120289 n=4: 1/2^7 + 1/3^7 + 1/5^7 = 181139311/21870000000; %e A120289 n=5: 1/2^11 + 1/3^11 + 1/5^11 + 1/7^11 = 17301861338484245234233/35027750054222100000000000. %o A120289 (Python) %o A120289 from fractions import Fraction %o A120289 from sympy import isprime, primerange %o A120289 def ok(p): %o A120289 if p < 3 or not isprime(p): return False %o A120289 s = sum(Fraction(1, pk**p) for pk in primerange(2, p)) %o A120289 return s.numerator%p == 0 %o A120289 print([k for k in range(200) if ok(k)]) # _Michael S. Branicky_, Jun 26 2022 %Y A120289 Cf. A119722. %K A120289 nonn %O A120289 1,1 %A A120289 _Alexander Adamchuk_, Jul 08 2006