cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120290 Numerator of generalized harmonic number H(p-1,2p)= Sum[ 1/k^(2p), {k,1,p-1}] divided by p^2 for prime p>3.

This page as a plain text file.
%I A120290 #16 Feb 16 2025 08:33:01
%S A120290 2479157521,159936660724017234488561,
%T A120290 1119583852472161859174156302552583713828739479026834819554843860744244189
%N A120290 Numerator of generalized harmonic number H(p-1,2p)= Sum[ 1/k^(2p), {k,1,p-1}] divided by p^2 for prime p>3.
%C A120290 Generalized harmonic number is H(n,m)= Sum[ 1/k^m, {k,1,n} ]. The numerator of generalized harmonic number H(p-1,2p) is divisible by p^2 for prime p>3.
%H A120290 Alexander Adamchuk, <a href="/A120290/b120290.txt">First 5 terms</a>.
%H A120290 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>.
%H A120290 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WolstenholmesTheorem.html">Wolstenholme's Theorem</a>.
%F A120290 a(n) = numerator[ Sum[ 1/k^(2*Prime[n]), {k,1,Prime[n]-1} ]] / Prime[n]^2 for n>2.
%e A120290 With prime(3) = 5, a(3) = numerator[ 1 + 1/2^10 + 1/3^10 + 1/4^10 ] / 5^2 = 61978938025 / 25 = 2479157521.
%t A120290 Table[Numerator[Sum[1/k^(2*Prime[n]),{k,1,Prime[n]-1}]],{n,3,7}]/Table[Prime[n]^2,{n,3,7}]
%Y A120290 Cf. A119722, A099828, A099827, A001008, A007406, A007408, A007410.
%K A120290 frac,nonn,bref
%O A120290 3,1
%A A120290 _Alexander Adamchuk_, Jul 08 2006