cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120295 Absolute value of the largest coefficient of Product[(1-x^k)^k,{k,1,n}].

This page as a plain text file.
%I A120295 #6 Feb 10 2015 18:08:17
%S A120295 1,2,6,30,289,5170,155768,7947236,695357704,105014923458,
%T A120295 27857098312474,12416271212737642,9302296598744837059,
%U A120295 12142590791028740988194,26874517085010633423659616,100413718348008543669377307304
%N A120295 Absolute value of the largest coefficient of Product[(1-x^k)^k,{k,1,n}].
%H A120295 Vaclav Kotesovec, <a href="/A120295/b120295.txt">Table of n, a(n) for n = 1..92</a>
%F A120295 a(n) = Max[Abs[CoefficientList[Product[(1-x^k)^k,{k,1,n}],x]]].
%e A120295 a(1)=1 because Product[(1-x^k)^k,{k,1,1}]=x-1.
%e A120295 a(2)=2 because Product[(1-x^k)^k,{k,1,2}]=(1-x)(1-x^2)^2=-x^5+x^4+2x^3-2x^2-x+1.
%t A120295 Table[Max[Abs[CoefficientList[Product[(1-x^k)^k,{k,1,n}],x]]],{n,1,16}]
%t A120295 p=1; Table[p=Expand[p*(1-x^n)^n]; Max[Abs[CoefficientList[p,x]]],{n,1,20}] (* _Vaclav Kotesovec_, Feb 10 2015 *)
%K A120295 nonn
%O A120295 1,2
%A A120295 _Alexander Adamchuk_, Jul 10 2006