This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120296 #24 May 09 2020 00:30:07 %S A120296 1,15,1231,19615,12280111,4090037,9824498837,157151464517, %T A120296 38193952437631,7637983935923,111835788321880643,111830093529238643, %U A120296 3194097388508809394723,3194009594644356242723,15970381078317764649391 %N A120296 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^4. %C A120296 p divides a(p-1) for prime p > 2 - similar to Wolstenholme's theorem for A007406(n) (= numerator of Sum_{k=1..n} 1/k^2) and for A007410(n) (= numerator of Sum_{k=1..n} 1/k^4). %C A120296 Lim_{n -> infinity} a(n)/A334585(n) = A267315 = (7/8)*A013662. - _Petros Hadjicostas_, May 07 2020 %F A120296 a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/k^4). %e A120296 The first few fractions are 1, 15/16, 1231/1296, 19615/20736, 12280111/12960000, 4090037/4320000, 9824498837/10372320000, ... = A120296/A334585. - _Petros Hadjicostas_, May 06 2020 %t A120296 Numerator[Table[Sum[(-1)^(k+1)/k^4,{k,1,n}],{n,1,20}]] %o A120296 (PARI) a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^4)); \\ _Michel Marcus_, May 07 2020 %Y A120296 Cf. A007406, A007410, A013662, A119682, A267315, A334585 (denominators). %K A120296 nonn,frac %O A120296 1,2 %A A120296 _Alexander Adamchuk_, Jul 10 2006 %E A120296 Name edited by _Petros Hadjicostas_, May 07 2020