cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120349 Refactorable numbers k such that the number of odd divisors r is odd, the number of even divisors s is even and both r and s are divisors of k.

Original entry on oeis.org

36, 3600, 8100, 10000, 22500, 26244, 32400, 90000, 142884, 202500, 396900, 518400, 656100, 810000, 980100, 1285956, 1368900, 1587600, 1679616, 2286144, 2340900, 2624400, 2924100
Offset: 1

Views

Author

Walter Kehowski, Jun 24 2006

Keywords

Comments

In general, since n is even, r is always a multiple of s and even if both r and s are divisors of n, the sum t=r+s may not be. For example, if n=144, then r=3, s=12 and t=r+s=15.

Examples

			a(1)=36 since r=3(odd), s=6(even) and t=r+s=9 are all divisors.
		

Crossrefs

Programs

  • Maple
    with(numtheory); T := proc(n::posint) local x, y, S; S:=divisors(n); x:=nops( select(z->type(z,odd),S) ); y:=nops( select(z->type(z,even),S) ); return [x,y] end; RF:=[]: N:=12^6/2: CNT:=12^4: for w to 1 do for k from 1 to N do n:=2*k; if k mod CNT = 0 then print((N-k)/CNT) fi; r:=T(n)[1]; s:=T(n)[2]; t:=r+s; if type(s,even) and type(r,odd) and andmap(z -> n mod z = 0, [r,s,t]) then RF:=[op(RF),n]; print(n,r,s,t); fi; od od; RF;

Formula

a(n) = n-th number such that n is even, r = number of odd divisors of n, s = number of even divisors of n, t = r+s = number of divisors of n, are all divisors of n and r is odd, s is even.