cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120350 Refactorable numbers k such that the number of odd divisors and the number of even divisors of k are both divisors of k.

Original entry on oeis.org

2, 12, 18, 24, 36, 72, 80, 180, 240, 252, 360, 396, 450, 468, 480, 504, 560, 612, 684, 720, 792, 828, 880, 882, 896, 936, 972, 1040, 1044, 1116, 1200, 1224, 1250, 1332, 1344, 1360, 1368, 1440, 1476, 1520, 1548, 1620, 1656, 1692, 1840, 1908, 1944, 2000
Offset: 1

Views

Author

Walter Kehowski, Jun 24 2006

Keywords

Comments

Since s = 0 if k is odd, the number k is necessarily even and then the number of even divisors s is always a multiple of the number of odd divisors r. Note that t = r + s may not be a divisor even if both r and s are divisors. For example, if k = 144, then r = 3, s = 12, but t = r + s = 15.

Examples

			a(3) = 18 since r = 3, s = 3 and t = r + s = 6 are all divisors.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A:=[]: for w to 1 do for k from 1 to 5000 do n:=2*k; S:=divisors(n); r:=nops( select(z->type(z,odd),S) ); s:=nops( select(z->type(z,even),S) ); t:=r+s; if andmap(z -> n mod z = 0, [r,s,t]) then A:=[op(A),n]; print(n,r,s,t); fi; od od; A;
  • Mathematica
    oddtau[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]]; seqQ[n_] := Module[{d = DivisorSigma[0, n], o = odd[n]}, Divisible[n, d] && Divisible[n, o] && Divisible[n, d - o]]; Select[Range[2, 2000, 2], seqQ] (* Amiram Eldar, Jan 15 2020 *)

Formula

a(n) = k is even, r = number of odd divisors of k, s = number of even divisors of k and t = r + s = number of divisors of k, are all divisors of k.

Extensions

Offset corrected by Amiram Eldar, Jan 15 2020