A120350 Refactorable numbers k such that the number of odd divisors and the number of even divisors of k are both divisors of k.
2, 12, 18, 24, 36, 72, 80, 180, 240, 252, 360, 396, 450, 468, 480, 504, 560, 612, 684, 720, 792, 828, 880, 882, 896, 936, 972, 1040, 1044, 1116, 1200, 1224, 1250, 1332, 1344, 1360, 1368, 1440, 1476, 1520, 1548, 1620, 1656, 1692, 1840, 1908, 1944, 2000
Offset: 1
Keywords
Examples
a(3) = 18 since r = 3, s = 3 and t = r + s = 6 are all divisors.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); A:=[]: for w to 1 do for k from 1 to 5000 do n:=2*k; S:=divisors(n); r:=nops( select(z->type(z,odd),S) ); s:=nops( select(z->type(z,even),S) ); t:=r+s; if andmap(z -> n mod z = 0, [r,s,t]) then A:=[op(A),n]; print(n,r,s,t); fi; od od; A;
-
Mathematica
oddtau[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]]; seqQ[n_] := Module[{d = DivisorSigma[0, n], o = odd[n]}, Divisible[n, d] && Divisible[n, o] && Divisible[n, d - o]]; Select[Range[2, 2000, 2], seqQ] (* Amiram Eldar, Jan 15 2020 *)
Formula
a(n) = k is even, r = number of odd divisors of k, s = number of even divisors of k and t = r + s = number of divisors of k, are all divisors of k.
Extensions
Offset corrected by Amiram Eldar, Jan 15 2020
Comments