A120351 Even numbers k such that the number of odd divisors r and the number of even divisors s are both divisors of k.
2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 34, 36, 38, 44, 46, 48, 52, 58, 62, 68, 72, 74, 76, 80, 82, 86, 90, 92, 94, 106, 112, 116, 118, 120, 122, 124, 126, 134, 142, 144, 146, 148, 150, 158, 160, 164, 166, 168, 172, 176, 178, 180, 188, 192, 194, 198, 202, 206
Offset: 1
Keywords
Examples
16 is a term since r=1 and s=4 are both divisors.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); A:=[]: N:=10^4/2: for w to 1 do for k from 2 to N do n:=2*k; S:=divisors(n); r:=nops( select(z->type(z,odd),S) ); s:=nops( select(z->type(z,even),S) ); if andmap(z -> n mod z = 0,[r,s]) then A:=[op(A),n]; print(n,r,s); fi; od od; A;
-
Mathematica
aQ[n_] := Divisible[n, (ev = DivisorSigma[0, n/2])] && Divisible[n, DivisorSigma[0, n] - ev]; Select[Range[2, 206, 2], aQ] (* Amiram Eldar, Nov 02 2019 *)
Formula
a(n) = n is even, r = number of odd divisors of n, s = number of even divisors of n, are all divisors of n.
Extensions
Term 2 inserted by Amiram Eldar, Nov 02 2019
Comments