cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120352 Numerator of Sum[ 1/k^p, {k,1,p-1} ], where p = Prime[n].

This page as a plain text file.
%I A120352 #5 Jan 02 2024 14:12:55
%S A120352 1,9,257875,940908897061,26038773205374138944970092886340352227,
%T A120352 5706439637514064062030256049808675747470805004854626598761,
%U A120352 3819751175863358416058062379293843331497647520922258560223903226691067255782388923965399403291707829
%N A120352 Numerator of Sum[ 1/k^p, {k,1,p-1} ], where p = Prime[n].
%C A120352 p^3 divides a(n) for n>2. A119722[n] = a(n)/p^3, p=Prime[n].
%C A120352 Numerators of Sum[ 1/k^n, {k,1,n-1} ] are listed in A120347(n) = {1, 9, 1393, 257875, 47463376609, 940908897061, ...}.
%F A120352 a(n) = Numerator[ Sum[ 1/k^Prime[n], {k,1,Prime[n]-1} ]]. a(n) = Numerator[ Zeta[p] - Zeta[p,p] ], for p = Prime[n].
%F A120352 a(n) = A120347[ Prime[n] ].
%t A120352 Table[Numerator[Sum[1/k^Prime[n],{k,1,Prime[n]-1}]],{n,1,8}]
%Y A120352 Cf. A119722.
%Y A120352 Cf. A120347.
%K A120352 frac,nonn
%O A120352 1,2
%A A120352 _Alexander Adamchuk_, Aug 16 2006, Oct 31 2006