A120356 Even refactorable numbers n such that the number r of odd divisors and the number s of even divisors are both even divisors of n and n is the first number for which the triple (r,s,t) occurs, where t is the number of divisors of n.
12, 24, 80, 180, 240, 360, 480, 720, 896, 1344, 1440, 1620, 2688, 3240, 3360, 4032, 5040, 6720, 6912, 8064, 10080, 13440, 20160, 20412, 24300, 25200, 30000, 30240, 34560, 40320, 40824, 48600, 56320, 56700, 60000, 60480, 62208, 67584, 69120
Offset: 1
Keywords
Examples
a(1)=12 since r=2, s=4 and r+s=6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
triples = {}; seq = {}; Do[t = DivisorSigma[0, n]; r = DivisorSigma[0, 2 n] - t; s = t - r; tri = {r, s, t}; If[AllTrue[tri, EvenQ[#] && Divisible[n, #] &] && !MemberQ[triples, tri], AppendTo[seq, n]; AppendTo[triples, tri]], {n, 2, 69120, 2}]; seq (* Amiram Eldar, Jun 13 2020 *)
Comments