A120358 Even refactorable numbers k such that the number r of odd divisors and the number s of even divisors are both odd divisors of k and k is the first number for which the triple (r,s,t) occurs, where t is the number of divisors of k.
2, 18, 72, 450, 1250, 4050, 16200, 52488, 56448, 64800, 71442, 101250, 198450, 235298, 285768, 328050, 405000, 793800, 1036800, 1312200, 1620000, 1786050, 3175200, 4572288, 4961250, 5248800, 7144200, 12700800, 14289858, 15059072, 16074450, 19845000, 24012450, 25920000, 28576800
Offset: 1
Keywords
Examples
a(2) = 18 since r = 3, s = 3 and t = r+s = 6.
Programs
-
Mathematica
seq[kmax_] := Module[{triples = {}, v = {}, r, s, t}, Do[t = DivisorSigma[0, k]; r = t - DivisorSigma[0, k/2]; s = t - r; If[OddQ[r] && OddQ[s] && FreeQ[triples, {r, s, t}] && Divisible[k, t] && Divisible[k, r] && Divisible[k, s], AppendTo[v, k]; AppendTo[triples, {r, s, t}]], {k, 2, kmax, 2}]; v]; seq[10^6] (* Amiram Eldar, Aug 01 2024 *)
Extensions
a(27)-a(35) from Amiram Eldar, Aug 01 2024
Comments