cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120362 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.

This page as a plain text file.
%I A120362 #64 May 04 2017 19:39:51
%S A120362 1,0,-1,0,4,-3,0,-16,60,-45,0,64,-1008,2520,-1575,0,-256,16320,
%T A120362 -105840,189000,-99225,0,1024,-261888,4055040,-15800400,21829500,
%U A120362 -9823275,0,-4096,4193280,-149909760,1153152000,-3178375200,3575672100,-1404728325,0,16384,-67104768,5459650560
%N A120362 Numerators of bivariate Taylor expansion of the incomplete elliptic integral of the second kind.
%C A120362 Table has only rows for odd h because all coefficients for even h are zero:
%C A120362 =====|=======================================================================
%C A120362 h \ s|  0     1         2          3            4            5             6
%C A120362 -----|-----------------------------------------------------------------------
%C A120362 1    |  1
%C A120362 3    |  0    -1
%C A120362 5    |  0     4        -3
%C A120362 7    |  0   -16        60        -45
%C A120362 9    |  0    64     -1008       2520        -1575
%C A120362 11   |  0  -256     16320    -105840       189000       -99225
%C A120362 13   |  0  1024   -261888    4055040    -15800400     21829500      -9823275
%C A120362 15   |  0 -4096   4193280 -149909760   1153152000  -3178375200    3575672100
%C A120362 17   |  0 16384 -67104768 5459650560 -79048569600 390486096000 -829555927200
%C A120362 ...
%C A120362 From _Francesco Franco_, Jan 12 2016: (Start)
%C A120362 Conjecture:
%C A120362 If t(h,s) is any term of the previous table after the first column (s>0), then:
%C A120362 t(h,s) = -( 4*s^2*t(h-2,s) + Sum_{j=0..s-1} (t(h-2,j) + t(h,j)) ), with t(1,0) = 1, t(h,0) = 0 for h>1 and t(h,s) = 0 for odd h = 1..2*s-1.
%C A120362 Version without the summation:
%C A120362 t(h,s) = -( 4*s^2*t(h-2,s) - (4*(s-1)^2-1)*t(h-2,s-1) ).
%C A120362 Some example (starting from j=1 in the summation):
%C A120362 t(11,3) = -( 4*t(9,3)*3^2 + Sum_{j=1..2} (t(9,j) + t(11,j)) ) = -( 4*2520*9 + (64-256) + (-1008+16320) ) = -105840; second version:
%C A120362 t(17,5) = -( 4*5^2*t(15,5) - (4*4^2-1)*t(15,4) ) = -( 4*25*(-3178375200) - 63*1153152000 ) = 390486096000.
%C A120362 Also:
%C A120362 t(h,1) = (-1)^(h/2-1/2)*A000302(h/2-3/2) for h>1;
%C A120362 t(h,2) = (-1)^(h/2-3/2)*A115490(h/2-3/2) for h>3;
%C A120362 a(A000124(n)) = 0.
%C A120362 (End)
%H A120362 R. J. Mathar, <a href="/A120362/a120362.pdf">Chebyshev series expansion of the Elliptic Integral of the Second Kind</a>
%F A120362 E(m,phi) = Int_{theta=0..phi} sqrt(1-m*sin^2 theta) d theta.
%F A120362 E(m,phi) = Sum_{n=1,3,5,7,9,...} ( Sum_{s=0..(n-1)/2} a( (n+1)/2,s ) * m^s )*phi^n/n!.
%e A120362 E(m,phi) = phi - m*phi^3/3! + (4*m-3*m^2)*phi^5/5! + (-16*m+60*m^2-45*m^3)*phi^7/7! + ...
%e A120362 so the first row (order phi^1) is a(1,1)=1 for the coefficient of phi,
%e A120362 the second row (order phi^3) is a(2,0)=0 for the missing coefficient of m^0*phi^3, and a(2,1)=-1 for the coefficient of m^1*phi^3/3!.
%p A120362 an := proc(m,n,s) local f: f := coeftayl(EllipticE(sin(phi),m^(1/2)),phi=0,n); coeftayl(f*n!,m=0,s) ; end: nmax := 27 ; for n from 1 to nmax by 2 do for s from 0 to (n-1)/2 do printf("%d,",an(m,n,s)) ; od ; od;
%t A120362 a[n_, s_] := SeriesCoefficient[EllipticE[phi, m], {phi, 0, n}, {m, 0, s}]*n!; Table[a[n, s], {n, 1, 17, 2}, {s, 0, n/2}] // Flatten (* _Jean-François Alcover_, Jan 06 2014 *)
%o A120362 (PARI) {T(n, k) = my(m = 2*n+1); if( k<0 || n<k, 0, m! * polcoeff( polcoeff( intformal( sqrt( 1 - y * sin(x + x * O(x^m))^2 ) ), m), k))}; /* _Michael Somos_, May 04 2017 */
%Y A120362 Cf. A010370, A079484 (diagonal).
%K A120362 sign,tabl,easy
%O A120362 1,5
%A A120362 _R. J. Mathar_, Jun 26 2006