cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120383 A number n is included if it satisfies: m divides n for all m's where the m-th prime divides n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 30, 32, 36, 48, 54, 56, 60, 64, 72, 78, 84, 90, 96, 108, 112, 120, 128, 144, 150, 152, 156, 162, 168, 180, 192, 196, 216, 224, 234, 240, 252, 256, 270, 288, 300, 304, 312, 324, 330, 336, 360, 384, 390, 392, 414, 420, 432, 444, 448
Offset: 1

Views

Author

Leroy Quet, Jun 29 2006

Keywords

Comments

From Rémy Sigrist, Apr 08 2017: (Start)
If n is in the sequence, then 2*n is also in the sequence.
a(2) = 2 is the only prime number in the sequence.
a(1) = 1 is the only odd number in the sequence.
(End)
Numbers divisible by all of their prime indices. A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 78 = prime(1) * prime(2) * prime(6) are {1,2,6}, all of which divide 78, so 78 is in the sequence. - Gus Wiseman, Mar 23 2019

Examples

			28 = 2^2 * 7. 2 is the first prime, 7 is the 4th prime. Since 1 and 4 both divide 28, then 28 is included in the sequence.
78 = 2 * 3 * 13. 2 is the first prime, 3 is the 2nd prime and 13 is the 6th prime. Since 1 and 2 and 6 each divide 78, then 78 is in the sequence. (Note that 1 * 2 * 6 does not divide 78.)
From _Gus Wiseman_, Mar 23 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  16: {1,1,1,1}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  64: {1,1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Maple
    A000040inv := proc(n) local i; i:=1 ; while true do if ithprime(i) = n then RETURN(i) ; fi ; i := i+1 ; end ; end: isA120383 := proc(n) local pl,p,i,j ; pl := ifactors(n) ; pl := pl[2] ; for i from 1 to nops(pl) do p := pl[i] ; j := A000040inv(p[1]) ; if n mod j <> 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: for n from 2 to 800 do if isA120383(n) then printf("%d,",n); fi ; od ; # R. J. Mathar, Sep 02 2006
  • Mathematica
    {1}~Join~Select[Range[2, 450], Function[n, AllTrue[PrimePi /@ FactorInteger[n][[All, 1]], Mod[n, #] == 0 &]]] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ok(n) = my (f=factor(n)); for (i=1, #f~, if (n % primepi(f[i,1]), return (0))); return (1) \\ Rémy Sigrist, Apr 08 2017

Extensions

More terms from R. J. Mathar, Sep 02 2006
Initial 1 prepended by Rémy Sigrist, Apr 08 2017