A120383 A number n is included if it satisfies: m divides n for all m's where the m-th prime divides n.
1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 30, 32, 36, 48, 54, 56, 60, 64, 72, 78, 84, 90, 96, 108, 112, 120, 128, 144, 150, 152, 156, 162, 168, 180, 192, 196, 216, 224, 234, 240, 252, 256, 270, 288, 300, 304, 312, 324, 330, 336, 360, 384, 390, 392, 414, 420, 432, 444, 448
Offset: 1
Keywords
Examples
28 = 2^2 * 7. 2 is the first prime, 7 is the 4th prime. Since 1 and 4 both divide 28, then 28 is included in the sequence. 78 = 2 * 3 * 13. 2 is the first prime, 3 is the 2nd prime and 13 is the 6th prime. Since 1 and 2 and 6 each divide 78, then 78 is in the sequence. (Note that 1 * 2 * 6 does not divide 78.) From _Gus Wiseman_, Mar 23 2019: (Start) The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 6: {1,2} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 24: {1,1,1,2} 28: {1,1,4} 30: {1,2,3} 32: {1,1,1,1,1} 36: {1,1,2,2} 48: {1,1,1,1,2} 54: {1,2,2,2} 56: {1,1,1,4} 60: {1,1,2,3} 64: {1,1,1,1,1,1} (End)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A000040inv := proc(n) local i; i:=1 ; while true do if ithprime(i) = n then RETURN(i) ; fi ; i := i+1 ; end ; end: isA120383 := proc(n) local pl,p,i,j ; pl := ifactors(n) ; pl := pl[2] ; for i from 1 to nops(pl) do p := pl[i] ; j := A000040inv(p[1]) ; if n mod j <> 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: for n from 2 to 800 do if isA120383(n) then printf("%d,",n); fi ; od ; # R. J. Mathar, Sep 02 2006
-
Mathematica
{1}~Join~Select[Range[2, 450], Function[n, AllTrue[PrimePi /@ FactorInteger[n][[All, 1]], Mod[n, #] == 0 &]]] (* Michael De Vlieger, Mar 24 2019 *)
-
PARI
ok(n) = my (f=factor(n)); for (i=1, #f~, if (n % primepi(f[i,1]), return (0))); return (1) \\ Rémy Sigrist, Apr 08 2017
Extensions
More terms from R. J. Mathar, Sep 02 2006
Initial 1 prepended by Rémy Sigrist, Apr 08 2017
Comments