cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120413 Largest even number strictly less than n^2.

Original entry on oeis.org

0, 2, 8, 14, 24, 34, 48, 62, 80, 98, 120, 142, 168, 194, 224, 254, 288, 322, 360, 398, 440, 482, 528, 574, 624, 674, 728, 782, 840, 898, 960, 1022, 1088, 1154, 1224, 1294, 1368, 1442, 1520, 1598, 1680, 1762, 1848, 1934, 2024, 2114, 2208, 2302, 2400, 2498, 2600
Offset: 1

Views

Author

Henry Bottomley, Jul 06 2006

Keywords

Comments

Longest non-intersecting route from (0, 0) to (n - 1, n - 1) staying in an (n - 1) X (n - 1) box (shortest route is length 2n A005843).

Programs

  • Maple
    seq(2*ceil(n^2/2)-2,n=1..50);
  • Mathematica
    Flatten[Table[{(2n - 1)^2 - 1, 4n^2 - 2}, {n, 25}]] (* Alonso del Arte, Apr 15 2016 *)
  • PARI
    lista(nn) = for(n=0, nn, print1((-1+(-1)^n+4*n+2*n^2)/2, ", ")); \\ Altug Alkan, Apr 15 2016

Formula

a(n) = 2*ceiling[n^2/2] - 2 = 2*A074148(n) = A085046(n) - 1.
From Colin Barker, Jul 29 2012: (Start)
a(n) = (-1 + (-1)^n + 4*n + 2*n^2)/2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: 2*x*(1 + 2*x - x^2)/((1-x)^3*(1+x)). (End)
a(n) = n^2 - 2 for even n; a(n) = n^2 - 1 for odd n. -Dennis P. Walsh, Apr 15 2016

Extensions

Offset corrected by N. J. A. Sloane, Apr 15 2016