This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120415 #27 Jan 05 2025 19:51:38 %S A120415 1,1,1,2,3,4,7,11,16,25,39,59,91,141,216,332,512,787,1210,1863,2866, %T A120415 4408,6783,10436,16054,24700,38002,58464,89947,138385,212903,327550, %U A120415 503937,775304,1192801,1835123,2823330,4343681,6682741,10281375,15817857,24335721 %N A120415 Expansion of 1/(1-x-x^3-x^6). %C A120415 Number of compositions of n into parts 1, 3, and 6. [_Joerg Arndt_, Sep 03 2013] %H A120415 Vincenzo Librandi, <a href="/A120415/b120415.txt">Table of n, a(n) for n = 0..1000</a> %H A120415 K. Edwards, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/46_47-1/Edwards11-08.pdf">A Pascal-like triangle related to the tribonacci numbers</a>, Fib. Q., 46/47 (2008/2009), 18-25. %H A120415 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,0,0,1). %F A120415 a(n) = a(n-1) + a(n-3) + a(n-6). %F A120415 a(n) = Sum_{k=0..floor(n/2)} A157897(n-k, k). - _G. C. Greubel_, Sep 02 2022 %t A120415 CoefficientList[Series[1/(1-x-x^3-x^6), {x, 0, 40}], x] (* _Vincenzo Librandi_, Sep 03 2013 *) %o A120415 (Magma) I:=[1,1,1,2,3,4]; [n le 6 select I[n] else Self(n-1)+Self(n-3)+Self(n-6): n in [1..40]]; // _Vincenzo Librandi_, Sep 03 2013 %o A120415 (SageMath) %o A120415 def A120415_list(prec): %o A120415 P.<x> = PowerSeriesRing(ZZ, prec) %o A120415 return P( 1/(1-x-x^3-x^6) ).list() %o A120415 A120415_list(40) # _G. C. Greubel_, Sep 02 2022 %Y A120415 Cf. A157897. %K A120415 easy,nonn %O A120415 0,4 %A A120415 _Jon E. Schoenfield_, Aug 27 2006