A120429 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k leaves (i.e., vertices of degree 0; n>=0, k>=1). A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.
1, 3, 9, 3, 27, 27, 1, 81, 162, 30, 243, 810, 360, 15, 729, 3645, 2970, 405, 3, 2187, 15309, 19845, 5670, 252, 6561, 61236, 115668, 56700, 6426, 84, 19683, 236196, 612360, 459270, 98658, 4536, 12, 59049, 885735, 3018060, 3214890, 1122660
Offset: 0
Examples
T(2,2)=3 because we have (Q,L,M), (Q,L,R) and (Q,M,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q. Triangle starts: 1; 3; 9, 3; 27, 27, 1; 81, 162, 30; 243, 810, 360, 15;
Programs
-
Maple
T:=proc(n,k) if k<=n+1-ceil(n/3) then (1/(n+1))*binomial(n+1,k)*sum(3^(n+j-2*k+2)*binomial(n+1-k,j)*binomial(j,k-1-j),j=0..n+1-k) else 0 fi end: 1; for n from 1 to 11 do seq(T(n,k),k=1..n+1-ceil(n/3)) od; # yields sequence in triangular form
Formula
T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=0..n+1-k}3^(n-2k+j+2)*binomial(n+1-k,j)*binomial(j,k-1-j).
G.f. = G = G(t,z) satisfies G = (1+z(G-1+t))^3.
Comments