This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120431 #32 Sep 08 2022 08:45:25 %S A120431 1,2,3,5,7,9,11,17,23,25,27,29,41,47,59,71,79,81,101,107,125,137,149, %T A120431 167,179,191,197,227,239,241,269,281,311,347,359,419,431,461,521,569, %U A120431 599,617,641,659,727,809,821,827,839,857,881,1019,1031,1049,1061,1091 %N A120431 Numbers k such that k and k+2 are prime powers. %C A120431 Twin prime powers, a generalization of the twin primes. The twin primes are a subsequence. %C A120431 From _Daniel Forgues_, Aug 17 2009: (Start) %C A120431 Numbers k such that k + (0, 2) is a prime power pair. %C A120431 k + (0, 2m), m >= 1, being an admissible pattern for prime pairs has high density. %C A120431 k + (0, 2m-1), m >= 1, being a non-admissible pattern for prime pairs, has low density [the only possible pairs are (2^a - 2m-1, 2^a) or (2^a, 2^a + 2m-1), a >= 0.] (End) %H A120431 Amiram Eldar, <a href="/A120431/b120431.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1270 from Daniel Forgues) %F A120431 a(n) = A064076(n-2) for n >= 3. - _Georg Fischer_, Nov 02 2018 %e A120431 a(5) = 7 since the 5th pair of twin prime powers is (7,9), while the first four pairs are (1,3), (2,4), (3,5) and (5,7). %p A120431 isppow := proc(n) local pf; pf := ifactors(n)[2]; if nops(pf) = 1 or n =1 then true; else false; fi; end; isA120431 := proc(n) RETURN (isppow(n) and isppow(n+2)); end; for n from 1 to 1500 do if isA120431(n) then printf("%d, ",n); fi; od; # _R. J. Mathar_, Dec 16 2006 %t A120431 Join[{1}, Select[Range[1100], And@@PrimePowerQ/@{#, # + 2} &]] (* _Vincenzo Librandi_, Nov 03 2018 *) %o A120431 (PARI) is(n)=if(n<4,return(n>0)); isprimepower(n) && isprimepower(n+2) \\ _Charles R Greathouse IV_, Apr 24 2015 %o A120431 (Magma) [1] cat [n: n in [2..1200] | IsPrimePower(n) and IsPrimePower(n+2)]; // _Vincenzo Librandi_, Nov 03 2018 %Y A120431 Cf. A001359, A000961, A064076. %Y A120431 Cf. A006549, A164571, A164572, A164573, A164574. %K A120431 nonn %O A120431 1,2 %A A120431 _Greg Huber_, Jul 13 2006 %E A120431 More terms from _R. J. Mathar_, Dec 16 2006