This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120477 #14 Sep 23 2017 15:45:03 %S A120477 1,6,22,63,155,343,702,1352,2480,4370,7445,12323,19894,31421,48675, %T A120477 74111,111099,164221,239656,345670,493243,696861,975518,1353971, %U A120477 1864315,2547941,3457972,4662273,6247169,8322010,11024775,14528914,19051697 %N A120477 Apply partial sum operator 5 times to partition numbers. %C A120477 In general, if g.f. = 1/(1-x)^m * Product_{k>=1} 1/(1-x^k), then a(n) ~ 2^(m/2 - 2) * 3^((m-1)/2) * n^(m/2 - 1) * exp(Pi*sqrt(2*n/3)) / Pi^m. - _Vaclav Kotesovec_, Oct 30 2015 %H A120477 Vaclav Kotesovec, <a href="/A120477/b120477.txt">Table of n, a(n) for n = 0..10000</a> %F A120477 G.f.: 1/((1-x)^5*Product_{k>=1} (1-x^k)). - _Emeric Deutsch_, Jul 24 2006 %F A120477 a(n) ~ 9*sqrt(2)*n^(3/2) * exp(Pi*sqrt(2*n/3)) / Pi^5. - _Vaclav Kotesovec_, Oct 30 2015 %p A120477 with(combinat): g:=1/(1-x)^5/product(1-x^k,k=1..50): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..37); # _Emeric Deutsch_, Jul 24 2006 %t A120477 nmax = 50; CoefficientList[Series[1/((1-x)^5 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 30 2015 *) %Y A120477 Cf. A000041, A000070, A014153, A014160, A014161. %Y A120477 Column k=6 of A292508. %K A120477 nonn %O A120477 0,2 %A A120477 _Jonathan Vos Post_, Jul 21 2006 %E A120477 More terms from _Emeric Deutsch_, Jul 24 2006