This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120479 #27 Apr 20 2025 12:33:22 %S A120479 3,13,37,151,577,811,1453,1873,12697,14401,18253,27901,44101,75853, %T A120479 87121,93151,106033,151687,178753,188443,242173,291853,319057,333271, %U A120479 362953,410701,643453,666073,712891,787153,1040503,1379953,1742401,1830733,1875997,1968751 %N A120479 Primes of the form k^3 + k^2 + 1. %C A120479 Primes in A098547. - _Michel Marcus_, Jan 21 2015 %H A120479 Harvey P. Dale, <a href="/A120479/b120479.txt">Table of n, a(n) for n = 1..1000</a> %F A120479 a(n) = A098547(A119863(n)). - _Elmo R. Oliveira_, Apr 20 2025 %e A120479 1^3 + 1^2 + 1 = 3 (prime), so 3 is in the sequence. %e A120479 2^3 + 2^2 + 1 = 13 (prime), so 13 is in the sequence. %e A120479 3^3 + 3^2 + 1 = 37 (prime), so 37 is in the sequence. %e A120479 4^3 + 4^2 + 1 = 81 = 3^4, so 81 is not in the sequence. %e A120479 5^3 + 5^2 + 1 = 151 (prime), so 151 is in the sequence. %t A120479 Select[Table[n^3+n^2+1,{n,200}],PrimeQ] (* _Harvey P. Dale_, Oct 23 2020 *) %o A120479 (PARI) for(n=1,10^3,if(isprime(p=n^3+n^2+1),print1(p,", "))) \\ _Derek Orr_, Jan 21 2015 %Y A120479 Cf. A119863 (corresponding k). %Y A120479 Cf. A000040, A098547. %K A120479 easy,nonn %O A120479 1,1 %A A120479 _Jonathan Vos Post_, Jul 21 2006