cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120493 Triangle T(n,k) read by rows ; multiply row n of Pascal's triangle (A007318) by A024175(n).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 428, 2996, 8988, 14980, 14980, 8988, 2996, 428, 1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416
Offset: 0

Views

Author

Philippe Deléham, Aug 05 2006

Keywords

Comments

Triangle given by [1, 1, 1, 1, 1, 1, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
1;
1, 1;
2, 4, 2;
5, 15, 15, 5;
14, 56, 84, 56, 14;
42, 210, 420, 420, 210, 42;
132, 792, 1980, 2640, 1980, 792, 132;
428, 2996, 8988, 14980, 14980, 8988, 2996, 428;
1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416 ;...
		

Formula

T(n,k)=A007318(n,k)*A024175(n).
T(n,k)=6*T(n-1,k)+6*T(n-1,k-1)-10*T(n-2,k)-20*T(n-2,k-1)-10*T(n-2,k-2)+4*T(n-3,k)+12*T(n-3,k-1)+12*T(n-3,k-2)+4*T(n-3,k-3) for n>3, T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(3,0)=T(3,3)=5, T(3,1)=T(3,2)=15, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 22 2013
G.f.: (-1 +5*x +5*x*y -6*x^2 -12*x^2*y -6*x^2*y^2 +x^3 +3*x^3*y +3*x^3*y^2 +x^3*y^3)/( (-1+2*x+2*x*y) *(2*x^2*y^2+4*x^2*y+2*x^2-4*x*y-4*x+1) ). - R. J. Mathar, Aug 12 2015