This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120507 #15 Jul 13 2025 14:01:51 %S A120507 1,2,3,4,4,5,6,7,8,8,9,10,11,12,12,13,14,15,16,16,16,17,18,19,20,20, %T A120507 21,22,23,24,24,25,26,27,28,28,29,30,31,32,32,32,33,34,35,36,36,37,38, %U A120507 39,40,40,41,42,43,44,44,45,46,47 %N A120507 Generalized meta-Fibonacci sequence a(n) with parameters s=0 and k=4. %H A120507 C. Deugau and F. Ruskey, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Ruskey/ruskey6.pdf">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link] %H A120507 C. Deugau and F. Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/MetaFib/GenMetaFib.html">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a> %F A120507 If n=1, a(n)=1. If 2 <= n <= 4, then a(n)=n. If n>4 then a(n)=a(n-a(n-1)) + a(n-1-a(n-2)) + a(n-2-a(n-3)) + a(n-3-a(n-4)). %F A120507 G.f.: (z / (1 - z)) * Product_{i>=1} (1 - z^(4 * [i])) / (1 - z^[i]), where [i] = (4^i - 1) / 3. %p A120507 A120507 := proc(n) %p A120507 option remember; %p A120507 if n <= 4 then return n end if; %p A120507 return add(procname(n - i + 1 - procname(n - i)), i = 1 .. 4) %p A120507 end proc: %p A120507 seq(A120507(n),n=1..70) ; %Y A120507 Cf. A120518, A120529. %K A120507 nonn %O A120507 1,2 %A A120507 _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006