A120522 First differences of successive meta-Fibonacci numbers A006949.
1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0
Offset: 1
Keywords
Links
- C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
- C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences
- B. Jackson and F. Ruskey, Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.
Formula
d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
G.f.: z (1 + z^2 ( (1 - z^[1]) / (1 - z^[1]) + z^3 * (1 - z^(2 * [i]))/(1 - z^[1]) ( (1 - z^[2]) / (1 - z^[2]) + z^5 * (1 - z^(2 * [2]))/(1 - z^[2]) (..., where [i] = (2^i - 1).