This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120525 #4 Aug 21 2013 12:13:56 %S A120525 1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,1,0, %T A120525 1,1,1,0,0,0,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,0,0,1,1, %U A120525 1,0,1,1,1,0,1 %N A120525 First differences of successive generalized meta-Fibonacci numbers A120503. %H A120525 C. Deugau and F. Ruskey, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Ruskey/ruskey6.pdf">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link] %H A120525 C. Deugau and F. Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/MetaFib/GenMetaFib.html">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a> %F A120525 d(n) = 0 if node n is an inner node, or 1 if node n is a leaf. %F A120525 g.f.: z (1 + z^1 ( (1 - z^(2 * [1])) / (1 - z^[1]) + z^3 * (1 - z^(3 * [i]))/(1 - z^[1]) ( (1 - z^(2 * [2])) / (1 - z^[2]) + z^9 * (1 - z^(3 * [2]))/(1 - z^[2]) (..., where [i] = (3^i - 1) / 2. %F A120525 g.f.: D(z) = z * prod((1 - z^(3 * [i])) / (1 - z^[i])), i=1..infinity), where [i] = (3^i - 1) / 2. %p A120525 d := n -> if n=1 then 1 else A120503(n)-A120503(n-1) fi; %Y A120525 Cf. A120503, A120514. %K A120525 nonn %O A120525 1,1 %A A120525 _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006