This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120529 #4 Aug 21 2013 12:15:58 %S A120529 1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,1,1,1,1,0,1,1,1, %T A120529 1,0,1,1,1,1,0,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0, %U A120529 1,1,1,1,0,1,1 %N A120529 First differences of successive generalized meta-Fibonacci numbers A120507. %H A120529 C. Deugau and F. Ruskey, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Ruskey/ruskey6.pdf">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link] %H A120529 C. Deugau and F. Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/MetaFib/GenMetaFib.html">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a> %F A120529 d(n) = 0 if node n is an inner node, or 1 if node n is a leaf. %F A120529 g.f.: z (1 + z^1 ( (1 - z^(3 * [1])) / (1 - z^[1]) + z^4 * (1 - z^(4 * [i]))/(1 - z^[1]) ( (1 - z^(3 * [2])) / (1 - z^[2]) + z^16 * (1 - z^(4 * [2]))/(1 - z^[2]) (..., where [i] = (4^i - 1) / 3. %F A120529 g.f.: D(z) = z * prod((1 - z^(4 * [i])) / (1 - z^[i])), i=1..infinity), where [i] = (4^i - 1) / 3. %p A120529 d := n -> if n=1 then 1 else A120507(n)-A120507(n-1) fi; %Y A120529 Cf. A120507, A120518. %K A120529 nonn %O A120529 1,1 %A A120529 _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006