This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120588 #50 Nov 22 2024 05:43:54 %S A120588 1,1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440, %T A120588 9694845,35357670,129644790,477638700,1767263190,6564120420, %U A120588 24466267020,91482563640,343059613650,1289904147324,4861946401452,18367353072152 %N A120588 G.f. is 1 + x*c(x), where c(x) is the g.f. of the Catalan numbers (A000108). %C A120588 Previous name was: G.f. satisfies: 3*A(x) = 2 + x + A(x)^2, with A(0) = 1. %C A120588 This is essentially a duplicate of entry A000108, the Catalan numbers (a(n) = A000108(n-1) for n>0). %C A120588 In order for the g.f. of an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n, where n > 1, it is necessary that the sequence start with [1, d, m*n*(n-1)/2], where d divides m*n*(n-1)/2 (m>0) and that the coefficients are given by r = n + d^2/m, c = r-1 and b = d^3/m. The remaining terms may then be integer and still satisfy: a_n(k) = r*a(k), where a_n(k) is the k-th term of the n-th self-convolution of the sequence. %H A120588 G. C. Greubel, <a href="/A120588/b120588.txt">Table of n, a(n) for n = 0..1000</a> %F A120588 G.f.: A(x) = 1 + Series_Reversion(1+3*x - (1+x)^2). %F A120588 Lagrange Inversion yields g.f.: A(x) = Sum_{n>=0} C(2*n,n)/(n+1)*(2+x)^(n+1)/3^(2*n+1). %F A120588 G.f.: (3 - sqrt(1-4*x))/2. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009 %F A120588 a(n) = Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - _Michael Somos_, Jul 23 2011 %F A120588 G.f.: 2 - G(0), where G(k)= 2*x*(2*k+1) + k +1 - 2*x*(k+1)*(2*k+3)/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jul 14 2013 %F A120588 G.f.: 2 - G(0), where G(k)= 1 - x/G(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Jul 19 2013 %F A120588 a(n) ~ 2^(2*n-2)/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Aug 19 2013 %F A120588 Given g.f. A(x), A001850(n-1) = coefficient of x^n in A(x)^n if n>0, the derivative of log(A(x)) is the g.f. for A026641. - _Michael Somos_, May 18 2015 %F A120588 A(x) = (1 + 2*Sum_{n >= 1} Catalan(n)*x^n)/(1 + Sum_{n >= 1} Catalan(n)*x^n) = (1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + Sum_{n >= 1} binomial(2*n,n)*x^n). - _Peter Bala_, Sep 01 2016 %F A120588 D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. - _R. J. Mathar_, Nov 22 2024 %e A120588 A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 +... %e A120588 A(x)^3 = 1 + 2*x + 3*x^2 + 6*x^3 + 15*x^4 + 42*x^5 + 126*x^6 + 396*x^7 +.. %e A120588 More generally, given the functional equation: %e A120588 r*A(x) = r-1 + b*x + A(x)^n %e A120588 the series solution is: %e A120588 A(x) = Sum_{i>=0} C(n*i,i)/(n*i-i+1)*(r-1+bx)^(n*i-i+1)/r^(n*i+1) %e A120588 which can be expressed as: %e A120588 A(x) = G( (r-1+bx)^(n-1)/r^n ) * (r-1+bx)/r %e A120588 where G(x) satisfies: G(x) = 1 + x*G(x)^n . %e A120588 Also we have: %e A120588 A(x) = 1 + Series_Reversion[ (1 + r*x - (1+x)^n )/b ]. %t A120588 a[ n_] := SeriesCoefficient[ 1 + (1 - Sqrt[1 - 4 x]) / 2, {x, 0, n}]; (* _Michael Somos_, May 18 2015 *) %o A120588 (PARI) {a(n)=local(A=1+x+x^2+x*O(x^n));for(i=0,n,A=A-3*A+2+x+A^2);polcoeff(A,n)} %o A120588 (PARI) {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* _Michael Somos_, Jul 23 2011 */ %o A120588 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (3 - Sqrt(1-4*x))/2 )); // _G. C. Greubel_, Feb 18 2019 %o A120588 (Sage) ((3-sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 18 2019 %Y A120588 Cf. A000108, A120589 (A(x)^2); A120590 - A120607. %Y A120588 Cf. A001850, A026641. %K A120588 nonn,easy %O A120588 0,4 %A A120588 _Paul D. Hanna_, Jun 16 2006, Jan 24 2008 %E A120588 New name by _Wolfdieter Lang_, Feb 06 2020