This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120594 #7 Nov 28 2017 03:38:18 %S A120594 1,2,6,44,394,3948,42364,476120,5532714,65935804,801461012,9897836520, %T A120594 123840983812,1566487308344,19999112293944,257365488659376, %U A120594 3334967582746218,43477505482249692,569854228738577572 %N A120594 G.f. satisfies: 8*A(x) = 7 + 8*x + A(x)^4, starting with [1,2,6]. %C A120594 See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n. %F A120594 G.f.: A(x) = 1 + Series_Reversion((1+8*x - (1+x)^4)/8). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(4*n,n)/(3*n+1) * (7+8*x)^(3*n+1)/8^(4*n+1). - _Paul D. Hanna_, Jan 24 2008 %F A120594 a(n) ~ 2^(-11/6 + 3*n) * (-7 + 6*2^(1/3))^(1/2 - n) / (n^(3/2) * sqrt(3*Pi)). - _Vaclav Kotesovec_, Nov 28 2017 %e A120594 A(x) = 1 + 2*x + 6*x^2 + 44*x^3 + 394*x^4 + 3948*x^5 + 42364*x^6 +... %e A120594 A(x)^4 = 1 + 8*x + 48*x^2 + 352*x^3 + 3152*x^4 + 31584*x^5 + 338912*x^6+.. %t A120594 CoefficientList[1 + InverseSeries[Series[(1+8*x - (1+x)^4)/8, {x, 0, 20}], x], x] (* _Vaclav Kotesovec_, Nov 28 2017 *) %o A120594 (PARI) {a(n)=local(A=1+2*x+6*x^2+x*O(x^n));for(i=0,n,A=A+(-8*A+7+8*x+A^4)/4);polcoeff(A,n)} %Y A120594 Cf. A120588 - A120593, A120595 - A120607. %K A120594 nonn %O A120594 0,2 %A A120594 _Paul D. Hanna_, Jun 16 2006