cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120598 G.f. satisfies: 30*A(x) = 29 + 125*x + A(x)^5, starting with [1,5,10].

This page as a plain text file.
%I A120598 #7 Nov 28 2017 03:45:55
%S A120598 1,5,10,90,825,8445,92820,1066740,12670635,154308775,1916370170,
%T A120598 24177471370,309007779015,3992428316835,52059968802000,
%U A120598 684240882022800,9055282215370050,120563388411386850,1613785688724362400
%N A120598 G.f. satisfies: 30*A(x) = 29 + 125*x + A(x)^5, starting with [1,5,10].
%C A120598 See comments in A120588 for conditions needed for an integer sequence to satisfy a functional equation of the form: r*A(x) = c + b*x + A(x)^n.
%F A120598 G.f.: A(x) = 1 + Series_Reversion((1+30*x - (1+x)^5)/125). Lagrange Inversion yields: G.f.: A(x) = Sum_{n>=0} C(5*n,n)/(4*n+1) * (29+125*x)^(4*n+1)/30^(5*n+1). - _Paul D. Hanna_, Jan 24 2008
%F A120598 a(n) ~ 5^(-1/2 + 3*n) * (-29 + 24*6^(1/4))^(1/2 - n) / (2^(15/8) * 3^(3/8) * n^(3/2) * sqrt(Pi)). - _Vaclav Kotesovec_, Nov 28 2017
%e A120598 A(x) = 1 + 5*x + 10*x^2 + 90*x^3 + 825*x^4 + 8445*x^5 +...
%e A120598 A(x)^5 = 1 + 25*x + 300*x^2 + 2700*x^3 + 24750*x^4 + 253350*x^5 +...
%t A120598 CoefficientList[1 + InverseSeries[Series[(1+30*x - (1+x)^5)/125, {x, 0, 20}], x], x] (* _Vaclav Kotesovec_, Nov 28 2017 *)
%o A120598 (PARI) {a(n)=local(A=1+5*x+10*x^2+x*O(x^n));for(i=0,n,A=A+(-30*A+29+125*x+A^5)/25);polcoeff(A,n)}
%Y A120598 Cf. A120588 - A120597, A120599 - A120607.
%K A120598 nonn
%O A120598 0,2
%A A120598 _Paul D. Hanna_, Jun 16 2006