This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120613 #53 Sep 08 2022 08:45:26 %S A120613 0,1,1,3,4,4,6,6,8,9,9,11,12,12,14,14,16,17,17,19,19,21,22,22,24,25, %T A120613 25,27,27,29,30,30,32,33,33,35,35,37,38,38,40,40,42,43,43,45,46,46,48, %U A120613 48,50,51,51,53,53,55,56,56,58,59,59,61,61,63,64,64,66,67,67,69,69,71,72 %N A120613 a(n) = floor(phi*floor(n/phi)) where phi=(1+sqrt(5))/2. %H A120613 N. J. A. Sloane, <a href="/A120613/b120613.txt">Table of n, a(n) for n = 1..10000</a> (corrected by Michel Dekking, uploaded again by _Georg Fischer_, Jan 31 2019) %H A120613 F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1. %H A120613 Martin Griffiths, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.118.06.497">The Golden String, Zeckendorf Representations, and the Sum of a Series</a>, Amer. Math. Monthly, 118 (2011), 497-507. See p. 502. %F A120613 a(n) = n - A003842(n-2) for n >= 2. [Corrected by _Georg Fischer_, Jan 31 2019] %F A120613 In particular, a(n) = n-1 or a(n) = n-2. - _Charles R Greathouse IV_, Aug 26 2022 %t A120613 Table[Floor[GoldenRatio*Floor[n/GoldenRatio]], {n,1,100}] (* _G. C. Greubel_, Oct 23 2018 *) %o A120613 (PARI) f=(1+sqrt(5))/2;a(n)=floor(f*floor(n/f)) %o A120613 (Magma) [Floor((1+Sqrt(5))*Floor(2*n/(1+Sqrt(5)))/2): n in [1..100]]; // _G. C. Greubel_, Oct 23 2018 %o A120613 (Python) %o A120613 from math import isqrt %o A120613 def A120613(n): return (m:=(n+isqrt(5*n**2)>>1)-n)+isqrt(5*m**2)>>1 # _Chai Wah Wu_, Aug 26 2022 %Y A120613 Cf. A001622, A120614 (first differences), A120615 (partial sums), A003842. %K A120613 nonn %O A120613 1,4 %A A120613 _Benoit Cloitre_, Jun 17 2006 %E A120613 Offset changed by _Michel Dekking_, Oct 23 2018