A120616 Generalized Riordan array (1/sqrt(1+4x^2),(1-sqrt(1+4x^2))/(2x)).
1, 0, -1, -2, 0, 1, 0, 3, 0, -1, 6, 0, -4, 0, 1, 0, -10, 0, 5, 0, -1, -20, 0, 15, 0, -6, 0, 1, 0, 35, 0, -21, 0, 7, 0, -1, 70, 0, -56, 0, 28, 0, -8, 0, 1, 0, -126, 0, 84, 0, -36, 0, 9, 0, -1, -252, 0, 210, 0, -120, 0, 45, 0, -10, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, -1; -2, 0, 1; 0, 3, 0, -1; 6, 0, -4, 0, 1; 0, -10, 0, 5, 0, -1; -20, 0, 15, 0, -6, 0, 1; 0, 35, 0, -21, 0, 7, 0, -1; 70, 0, -56, 0, 28, 0, -8, 0, 1; 0, -126, 0, 84, 0, -36, 0, 9, 0, -1; -252, 0, 210, 0, -120, 0, 45, 0, -10, 0, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows n = 0..150, flattened.)
- Robert S. Maier, Sheffer Polynomials and the s-ordering of Exponential Boson Operators, arXiv:2508.13094 [quant-ph], 2025. See p. 27.
Programs
-
Mathematica
T[n_, k_] := Binomial[n, (n + k)/2]*(-1)^((n + k)/2) (1 + (-1)^(n + k))/2; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2025 *)
Formula
Number triangle T(n,k)=C(n,(n+k)/2)(-1)^((n+k)/2)(1+(-1)^(n+k))/2.
abs(T(n,k)) = A108044(n,k).
Comments