cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120732 Number of square matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.

This page as a plain text file.
%I A120732 #17 Nov 15 2018 08:39:58
%S A120732 1,1,3,15,107,991,11267,151721,2360375,41650861,821881709,17932031225,
%T A120732 428630422697,11138928977049,312680873171465,9428701154866535,
%U A120732 303957777464447449,10431949496859168189,379755239311735494421
%N A120732 Number of square matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
%H A120732 G. C. Greubel, <a href="/A120732/b120732.txt">Table of n, a(n) for n = 0..250</a>
%F A120732 a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A048144(k).
%F A120732 G.f.: Sum_{n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1-x)^(-j)-1)^n.
%F A120732 a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.4670932578797312973586879293426... . - _Vaclav Kotesovec_, May 07 2014
%F A120732 In closed form, c = 2^(log(2)/2-2) / (log(2) * sqrt(Pi*(1-log(2)))). - _Vaclav Kotesovec_, May 03 2015
%F A120732 G.f.: Sum_{n>=0} (1-x)^n * (1 - (1-x)^n)^n. - _Paul D. Hanna_, Mar 26 2018
%e A120732 From _Gus Wiseman_, Nov 14 2018: (Start)
%e A120732 The a(3) = 15 matrices:
%e A120732   [3]
%e A120732 .
%e A120732   [2 0] [1 1] [1 1] [1 0] [1 0] [0 2] [0 1] [0 1]
%e A120732   [0 1] [1 0] [0 1] [1 1] [0 2] [1 0] [2 0] [1 1]
%e A120732 .
%e A120732   [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
%e A120732   [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
%e A120732   [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
%e A120732 (End)
%t A120732 Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n,k]*Sum[(m!)^2*StirlingS2[k,m]^2,{m,0,k}],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, May 07 2014 *)
%t A120732 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#]&]],{n,5}] (* _Gus Wiseman_, Nov 14 2018 *)
%Y A120732 Cf. A007716, A048291, A054976, A057149, A057150, A057151, A104601, A104602, A120733, A138178, A316983, A319616.
%K A120732 nonn
%O A120732 0,3
%A A120732 _Vladeta Jovovic_, Aug 18 2006