cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120733 Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.

This page as a plain text file.
%I A120733 #100 Mar 25 2025 02:47:25
%S A120733 1,1,5,33,281,2961,37277,546193,9132865,171634161,3581539973,
%T A120733 82171451025,2055919433081,55710251353953,1625385528173693,
%U A120733 50800411296363617,1693351638586070209,59966271207156833313,2248276994650395873861,88969158875611127548481
%N A120733 Number of matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
%C A120733 The number of such matrices up to rows/columns permutations are given in A007716.
%C A120733 Dimensions of the graded components of the Hopf algebra MQSym (Matrix quasi-symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 23 2006
%C A120733 From _Kyle Petersen_, Aug 10 2016: (Start)
%C A120733 Number of cells in the two-sided Coxeter complex of the symmetric group. Inclusion of faces corresponds to refinement of matrices, see Section 6 of Petersen paper. The number of cells in the type B analog is given by A275787.
%C A120733 Also known as "two-way contingency tables" in the Diaconis-Gangolli reference. (End)
%H A120733 Alois P. Heinz, <a href="/A120733/b120733.txt">Table of n, a(n) for n = 0..400</a>
%H A120733 Sara C. Billey, M. Konvalinka, T. K. Petersen, W. Slofstra, and B. E. Tenner, <a href="http://www.math.washington.edu/~billey/papers/DoubleCosets.pdf">Parabolic double cosets in Coxeter groups</a>, Discrete Mathematics and Theoretical Computer Science, Submitted, 2016.
%H A120733 Thomas Browning, <a href="https://arxiv.org/abs/2010.13256">Counting Parabolic Double Cosets in Symmetric Groups</a>, arXiv:2010.13256 [math.CO], 2020.
%H A120733 Georg Cantor, <a href="https://www.deutsche-digitale-bibliothek.de/item/CPNKIRFILEETQPXCYR5RHGUJCCKBXN5U">Gesammelte Abhandlungen mathematischen und philosophischen Inhalts</a> See IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, page 436, Springer, Berlin.
%H A120733 Giulio Cerbai and Anders Claesson, <a href="https://arxiv.org/abs/2310.01270">Caylerian polynomials</a>, arXiv:2310.01270 [math.CO], 2023. Mentions this sequence.
%H A120733 Giulio Cerbai and Anders Claesson, <a href="https://arxiv.org/abs/2411.08426">Enumerative aspects of Caylerian polynomials</a>, arXiv:2411.08426 [math.CO], 2024. See pp. 3, 19.
%H A120733 P. Diaconis and A. Gangolli, <a href="http://dx.doi.org/10.1007/978-1-4612-0801-3_3">Rectangular arrays with fixed margins</a>, Discrete probability and algorithms (Minneapolis, MN, 1993), 15-41, IMA Vol. Math. Appl., 72, Springer, New York, 1995.
%H A120733 G. Duchamp, F. Hivert and J.-Y. Thibon, <a href="https://arxiv.org/abs/math/0105065">Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras</a>, arXiv:math/0105065 [math.CO], 2001; Internat. J. Alg. Comp. 12 (2002), 671-717.
%H A120733 Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, <a href="https://arxiv.org/abs/2503.14417">Matrix symmetric and quasi-symmetric functions and noncommutative representation theory</a>, arXiv:2503.14417 [math.CO], 2025. See p. 11.
%H A120733 Masato Kobayashi, <a href="https://arxiv.org/abs/1907.11801">Construction of double coset system of a Coxeter group and its applications to Bruhat graphs</a>, arXiv:1907.11801 [math.CO], 2019.
%H A120733 Vaclav Kotesovec, <a href="/A120733/a120733.pdf">Asymptotics of the sequence A120733</a>
%H A120733 E. Munarini, M. Poneti, and S. Rinaldi, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Rinaldi/rinaldi.html">Matrix compositions</a>, JIS 12 (2009) 09.4.8, Remark 30.
%H A120733 T. K. Petersen, <a href="http://arxiv.org/abs/1607.00086">A two-sided analogue of the Coxeter complex</a>, arXiv:1607.00086 [math.CO], (2016).
%F A120733 a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A000670(k)^2.
%F A120733 G.f.: Sum_{m>=0,n>=0} Sum_{j=0..n} (-1)^(n-j)*C(n,j)*((1-x)^(-j)-1)^m.
%F A120733 a(n) = Sum_{r>=0,s>=0} binomial(r*s+n-1,n)/2^(r+s+2).
%F A120733 G.f.: Sum_{n>=0} 1/(2-(1-x)^(-n))/2^(n+1). - _Vladeta Jovovic_, Oct 30 2006
%F A120733 a(n) ~ 2^(log(2)/2-2) * n! / (log(2))^(2*n+2). - _Vaclav Kotesovec_, May 07 2014
%e A120733 a(2) = 5:
%e A120733 [1 0]   [0 1]   [1]   [1 1]   [2]
%e A120733 [0 1]   [1 0]   [1]
%e A120733 From _Gus Wiseman_, Nov 14 2018: (Start)
%e A120733 The a(3) = 33 matrices:
%e A120733   [3][21][12][111]
%e A120733 .
%e A120733   [2][20][11][11][110][101][1][10][10][100][02][011][01][01][010][001]
%e A120733   [1][01][10][01][001][010][2][11][02][011][10][100][20][11][101][110]
%e A120733 .
%e A120733   [1][10][10][10][100][100][01][01][010][01][010][001][001]
%e A120733   [1][10][01][01][010][001][10][10][100][01][001][100][010]
%e A120733   [1][01][10][01][001][010][10][01][001][10][100][010][100]
%e A120733 (End)
%p A120733 t1 := M -> add( add( add( (-1)^(n-j)*binomial(n, j)*((1-x)^(-j)-1)^m, j=0..n), n=0..M), m=0..M); s := series(t1(20),x,20); gfun[seriestolist](%); # _N. J. A. Sloane_, Jan 14 2009
%t A120733 a[n_] := Sum[2^(-2-r-s)*Binomial[n+r*s-1, n], {r, 0, Infinity}, {s, 0, Infinity}]; Table[Print[an = a[n]]; an, {n, 0, 19}] (* _Jean-François Alcover_, May 15 2012, after _Vladeta Jovovic_ *)
%t A120733 Flatten[{1,Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n,k]*Sum[m!*StirlingS2[k, m],{m,k}]^2,{k,n}],{n,20}]}] (* _Vaclav Kotesovec_, May 07 2014 *)
%t A120733 multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#]]&]],{n,5}] (* _Gus Wiseman_, Nov 14 2018 *)
%Y A120733 Row sums of A261781.
%Y A120733 Cf. A000219, A007322 (partial sums), A007716, A101370, A120732, A261838, A317533, A321515, A321585, A321586.
%K A120733 nonn
%O A120733 0,3
%A A120733 _Vladeta Jovovic_, Aug 18 2006, Aug 21 2006
%E A120733 More terms from _N. J. A. Sloane_, Jan 14 2009