This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120741 #24 Nov 12 2022 02:11:37 %S A120741 0,3,24,171,1200,8403,58824,411771,2882400,20176803,141237624, %T A120741 988663371,6920643600,48444505203,339111536424,2373780754971, %U A120741 16616465284800,116315256993603,814206798955224,5699447592686571,39896133148806000 %N A120741 a(n) = (7^n - 1)/2. %C A120741 Number of compositions of odd natural numbers into n parts < 7. - _Adi Dani_, Jun 11 2011 %H A120741 Vincenzo Librandi, <a href="/A120741/b120741.txt">Table of n, a(n) for n = 0..300</a> %H A120741 Adi Dani, <a href="https://oeis.org/wiki/User:Adi_Dani_/Restricted_compositions_of_natural_numbers">Restricted compositions of natural numbers</a> %H A120741 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-7). %F A120741 a(n) = A034494(n) - 1. %F A120741 a(n) = 8*a(n-1) - 7*a(n-2), n >= 2. %F A120741 a(n) = right term in M^n * [1,0], where M is the 2 X 2 matrix [4,3; 3,4]. %F A120741 From _G. C. Greubel_, Nov 11 2022: (Start) %F A120741 G.f.: 3*x/((1-x)*(1-7*x)). %F A120741 E.g.f.: (1/2)*(exp(7*x) - exp(x)). (End) %e A120741 From _Adi Dani_, Jun 11 2011: (Start) %e A120741 a(2)=24: there are 24 compositions of odd numbers into 2 parts < 7: %e A120741 1: (0,1), (1,0); %e A120741 3: (0,3), (3,0), (1,2), (2,1); %e A120741 5: (0,5), (5,0), (1,4), (4,1), (2,3), (3,2); %e A120741 7: (1,6), (6,1), (2,5), (5,2), (3,4), (4,3); %e A120741 9: (3,6), (6,3), (4,5), (5,4); %e A120741 11: (5,6),(6,5). (End) %e A120741 a(4) = 1200 = A034494(4) - 1, where A034494(4) = 1201. %e A120741 a(4) = 1200 = 8*a(3) - 7*a(2) = 8*171 - 7*24. %e A120741 a(4) = 1200 = right term in M^n * [1,0] = [A034494(4), a(4)] = [1201, 1200]. %t A120741 Table[1/2*(7^n - 1), {n, 0, 25}] %o A120741 (Magma) [(7^n-1)/2: n in [0..25]]; // _Vincenzo Librandi_, Jun 11 2011 %o A120741 (PARI) a(n)=7^n\2 \\ _Charles R Greathouse IV_, Jun 11 2011 %o A120741 (SageMath) [(7^n-1)/2 for n in range(31)] # _G. C. Greubel_, Nov 11 2022 %Y A120741 Cf. A034494. %K A120741 nonn,easy %O A120741 0,2 %A A120741 _Gary W. Adamson_, Jun 30 2006 %E A120741 Complete edit by _Joerg Arndt_, Jun 11 2011