cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120806 Positive integers k such that k+d+1 is prime for all divisors d of k.

Original entry on oeis.org

1, 3, 5, 9, 11, 29, 35, 39, 41, 65, 125, 179, 191, 239, 281, 419, 431, 641, 659, 749, 755, 809, 905, 935, 989, 1019, 1031, 1049, 1229, 1289, 1451, 1469, 1481, 1829, 1859, 1931, 2129, 2141, 2339, 2519, 2549, 2969, 3161, 3299, 3329, 3359, 3389, 3539, 3821, 3851
Offset: 1

Views

Author

Walter Kehowski, Jul 06 2006

Keywords

Comments

No a(n) can be even, since a(n)+2 must be prime. If a(n) is a prime, then it is a Sophie Germain twin prime (A045536). The only square is 9. Let the degree of n be the sum of the exponents in its prime factorization. By convention, degree(1)=0. Then every a(n) has degree less than or equal to 3. Let the weight of n be the number of its distinct prime factors. By convention, weight(1)=0. Clearly, w<=d is always true, with d=w only when the number is squarefree. Let [w,d] be the set of all integers with weight w and degree d. Then only the following possibilities occur: 1. [0,0] => a(1)=1. 2. [1,1] => Sophie Germain twin prime: 3, 5, 11, 29, A005384, A045536. 3. [1,2] => a(4)=9 is the only occurrence. 4. [1,3] => 5^3, 71^3 and 303839^3 are the first few cubes, A000578, A120808. 5. [2,2] => 5*7, 3*13 and 5*13 are the first few semiprimes, A001358, A120807. 6. [2,3] => 11*13^2, 61^2*89 and 13^2*12671 are the first few examples, A014612, A054753, A120809. 7. [3,3] => 5*11*17, 5*53*1151, 5*11*42533 are the first few 3-almost primes, A007304, A120810.

Examples

			a(11) = 125 since divisors(125) = {1, 5, 25, 125} and the set of all n+d+1 is {127, 131, 151, 251} and these are all primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory); L:=[1]: for w to 1 do for k from 1 to 12^6 while nops(L)<=1000 do x:=2*k+1; if andmap(isprime,[x+2,2*x+1]) then S:=divisors(x) minus {1,x}; Q:=map(z-> x+z+1, S); if andmap(isprime,Q) then L:=[op(L),x]; print(nops(L),ifactor(x)); fi; fi; od od; L;
  • Mathematica
    q[k_] := AllTrue[Divisors[k], PrimeQ[k + # + 1] &]; Select[Range[5000], q] (* Amiram Eldar, Aug 05 2024 *)
  • PARI
    is(n)=fordiv(n,d,if(!isprime(n+d+1),return(0)));1; \\ Joerg Arndt, Nov 07 2015