cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120810 Integers x of the form p*q*r in A120806: x+d+1 is prime for all divisors d of x, where p, q and r are distinct odd primes. See A007304.

Original entry on oeis.org

935, 305015, 2339315, 3690185, 14080121, 14259629, 16143005, 17754869, 18679409, 26655761, 29184749, 47372135, 80945699, 82768529, 87102509, 123581021, 131225889, 141328979, 177392861, 224285529, 289174109, 348095519, 350342279, 359093699, 372823805, 403685135
Offset: 1

Views

Author

Walter Kehowski, Jul 06 2006

Keywords

Examples

			a(1) = 935 since x = 935 = 5*11*17, divisors(x) = {1, 5, 11, 17, 5*11, 5*17, 11*17, 5*11*17} and x+d+1 = {937, 941, 947, 953, 991, 1021, 1123, 1871} are all primes.
		

Crossrefs

Intersection of A007304 and A120806.

Programs

  • Maple
    with(numtheory); is3almostprime := proc(n) local L; if n in [0,1] or isprime(n) then return false fi; L:=ifactors(n)[2]; if nops(L) in [1,2,3] and convert(map(z-> z[2], L), `+`) = 3 then return true else return false fi; end; L:=[]: for w to 1 do for k from 1 while nops(L)<=50 do x:=2*k+1; if x mod 6 = 5 and issqrfree(x) and is3almostprime(x) and andmap(isprime,[x+2,2*x+1]) then S:=divisors(x); Q:=map(z-> x+z+1, S); if andmap(isprime,Q) then L:=[op(L),x]; print(nops(L),ifactor(x)); fi; fi; od od;
  • PARI
    is(n) = my(f); if(!(n%2), return(0)); f = factor(n); if(f[,2] != [1,1,1]~, return(0)); fordiv(f, d, if(!isprime(n + d + 1), return(0))); 1; \\ Amiram Eldar, Aug 05 2024

Extensions

a(16)-a(26) from Amiram Eldar, Aug 05 2024