cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120816 Number of permutations of length n with exactly 8 occurrences of the pattern 2-13.

This page as a plain text file.
%I A120816 #8 Nov 14 2015 18:14:52
%S A120816 9,716,20466,365996,4939341,55098294,535240680,4680045630,37665984798,
%T A120816 283492037268,2018852205700,13724440760376,89682252682256,
%U A120816 566388685336800,3472428372731880,20740959695100150,121059468257664984
%N A120816 Number of permutations of length n with exactly 8 occurrences of the pattern 2-13.
%D A120816 R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
%D A120816 Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%H A120816 Alois P. Heinz, <a href="/A120816/b120816.txt">Table of n, a(n) for n = 7..500</a>
%H A120816 R. Parviainen, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Parviainen/parviainen3.html">Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
%F A120816 a(n) = (-7983360 - 12956832n + 10475400n^2 + 3647724n^3 - 416326n^4 - 249417n^5 - 19971n^6 + 2646n^7 + 576n^8 + 39n^9 + n^10)/(40320(n+8)(n+9)(n+10))Binomial[2n, n-7]; generating function = x^7 C^15(29 - 65536C + 499576C^2 - 1679496C^3 + 3298054C^4 - 4270444C^5 + 3911698C^6 - 2671744C^7 + 1439239C^8 - 659504C^9 + 279446C^10 - 112922C^11 + 41165C^12 - 12362C^13 + 2816C^14 - 448C^15 + 44C^16 - 2C^17)/(2-C)^15, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.
%Y A120816 Cf. A002629, A094218, A094219, A120812-A120815.
%Y A120816 Column k=8 of A263776.
%K A120816 nonn
%O A120816 7,1
%A A120816 Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006