cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A120854 Matrix log of A117939, read by rows, consisting only of 0's, 3's and signed 2's.

This page as a plain text file.
%I A120854 #6 Jun 13 2015 11:07:56
%S A120854 0,2,0,3,-2,0,2,0,0,0,0,2,0,2,0,0,0,2,3,-2,0,3,0,0,-2,0,0,0,0,3,0,0,
%T A120854 -2,0,2,0,0,0,3,0,0,-2,3,-2,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,
%U A120854 0,0,0,2,0,0,0,0,0,0,3,-2,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,2,0,0,0,0,0,0,2,0,0,0,0,0,2,3,-2,0,0,0,0,0
%N A120854 Matrix log of A117939, read by rows, consisting only of 0's, 3's and signed 2's.
%C A120854 The number of nonzero elements in row n equals A053735(n), the sum of ternary digits of n. Row sums are A120855(n) = 2*A062756 + A081603(n), where A062756(n) = number of 1's in ternary expansion of n and A081603(n) = number of 2's in ternary expansion of n. Triangle A117939 is related to partitions of n into powers of 3 and is the matrix square of A117947, where A117947(n,k) = balanced ternary digits of C(n,k) mod 3, also A117947(n,k) = L(C(n,k)/3) where L(j/p) is the Legendre symbol of j and p.
%F A120854 Ternary fractal, T(3*n,3*k) = T(n,k), defined by: T(n,k) = 0 if n<=k or when more than 1 digit differs between the ternary expansions of n and k; else T(n,k) = T(m,j) where the only ternary digits of n, k, that differ are m, j, respectively and T(1,0)=2, T(2,1)=-2, T(2,0)=3.
%e A120854 Triangle begins:
%e A120854 0;
%e A120854 2, 0;
%e A120854 3,-2, 0;
%e A120854 2, 0, 0, 0;
%e A120854 0, 2, 0, 2, 0;
%e A120854 0, 0, 2, 3,-2, 0;
%e A120854 3, 0, 0,-2, 0, 0, 0;
%e A120854 0, 3, 0, 0,-2, 0, 2, 0;
%e A120854 0, 0, 3, 0, 0,-2, 3,-2, 0;
%e A120854 2, 0, 0, 0, 0, 0, 0, 0, 0, 0; ...
%e A120854 Matrix exponentiation gives A117939:
%e A120854 1;
%e A120854 2, 1;
%e A120854 1,-2, 1;
%e A120854 2, 0, 0, 1;
%e A120854 4, 2, 0, 2, 1;
%e A120854 2,-4, 2, 1,-2, 1;
%e A120854 1, 0, 0,-2, 0, 0, 1;
%e A120854 2, 1, 0,-4,-2, 0, 2, 1;
%e A120854 1,-2, 1,-2, 4,-2, 1,-2, 1; ...
%e A120854 and A117939 is the matrix square of A117947:
%e A120854 1;
%e A120854 1, 1;
%e A120854 1,-1, 1;
%e A120854 1, 0, 0, 1;
%e A120854 1, 1, 0, 1, 1;
%e A120854 1,-1, 1, 1,-1, 1;
%e A120854 1, 0, 0,-1, 0, 0, 1;
%e A120854 1, 1, 0,-1,-1, 0, 1, 1;
%e A120854 1,-1, 1,-1, 1,-1, 1,-1, 1; ...
%o A120854 (PARI) /* Generated as the Matrix LOG of A117939: */ T(n,k)=local(M=matrix(n+1,n+1,r,c,(binomial(r-1,c-1)+1)%3-1)^2, L=sum(i=1,#M,-(M^0-M)^i/i));return(L[n+1,k+1])
%o A120854 (PARI) /* Generated as the Ternary Fractal: */ T(n,k)=local(r=n,c=k,s=floor(log(n+1)/log(3))+1,u=vector(s),v=vector(s),d,e); if(n<=k,0,if(n<3&k<3,[0,0,0;2,0,0;3,-2,0][n+1,k+1], for(i=1,#u,u[i]=r%3;r=r\3);for(i=1,#v,v[i]=c%3;c=c\3); d=0;for(i=1,#v,if(u[i]!=v[i],d+=1;e=i));if(d==1,T(u[e],v[e]),0)))
%Y A120854 Cf. A117939, A117947; A120855 (row sums), A062756, A081603, A053735.
%K A120854 easy,sign,tabl
%O A120854 0,2
%A A120854 _Paul D. Hanna_, Jul 08 2006