This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120871 #20 Jul 11 2020 03:04:47 %S A120871 1,4,2,7,8,17,7,18,17,32,14,31,9,28,23,46,16,41,34,63,25,56,14,47,36, %T A120871 73,23,62,49,92,34,79,64,113,47,98,28,81,62,119,41,100,79,142,56,121, %U A120871 31,98,73,144,46,119,92,169,63,142,113,196,82,167,49,136,103,194 %N A120871 a(n) is the value of j for row n of the fixed-j dispersion for Q = 8. %C A120871 This sequence results from A087056 by deleting duplicates. %H A120871 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling2/kimberling45.html">The equation (j+k+1)^2 - 4*k = Q*n^2 and related dispersions</a>, Journal of Integer Sequences, 10 (2007), Article #07.2.7. %e A120871 For each positive integer n, there is a unique pair (j,k) of positive integers such that (j + k + 1)^2 - 4*k = 8*n^2. This representation is used to define the fixed-j dispersion for Q = 8, given by A120860, having northwest corner: %e A120871 1, 5, 29, 169, ... %e A120871 2, 10, 58, 338, ... %e A120871 3, 17, 99, 577, ... %e A120871 4, 22, 128, 746, ... %e A120871 ... %e A120871 The pair (j,k) for each n, shown in the position occupied by n in the above array, is shown here: %e A120871 (1,2), (1,14), (1,82), (1,478), ... %e A120871 (4,1), (4,25), (4,161), (4,953), ... %e A120871 (2,7), (2,47), (2,279), (2,1631), ... %e A120871 (7,4), (7,56), (7,356), (7,2104), ... %e A120871 ... %e A120871 The fixed-j for row 1 is a(1) = 1; %e A120871 the fixed-j for row 2 is a(2) = 4; etc. %e A120871 (For example, (4 + 25 + 1)^2 - 4*25 = 8*10^2.) %o A120871 (PARI) f(n) = 3*n + 2*sqrtint(2*n^2); \\ A098021 %o A120871 unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)); ); }; %o A120871 D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g, 1]=t; listput(listus, t); t = f(t); m[g, 2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g, h-1] - m[g, h-2]; m[g, h] = t; listput(listus, t); ); ); m; }; \\ A120860 %o A120871 q(n) = 2*n^2 - sqrtint(2*n^2)^2; \\ A087056 %o A120871 lista(nn) = my(m=D(nn)); vector(nn, n, q(m[n, 1])); \\ _Michel Marcus_, Jul 09 2020 %Y A120871 Cf. A087056, A098021, A120860. %K A120871 nonn %O A120871 1,2 %A A120871 _Clark Kimberling_, Jul 10 2006 %E A120871 More terms from _Michel Marcus_, Jul 09 2020