A120874 Fractal sequence of the Fraenkel array (A038150).
1, 2, 1, 3, 4, 2, 5, 1, 6, 7, 3, 8, 9, 4, 10, 2, 11, 12, 5, 13, 1, 14, 15, 6, 16, 17, 7, 18, 3, 19, 20, 8, 21, 22, 9, 23, 4, 24, 25, 10, 26, 2, 27, 28, 11, 29, 30, 12, 31, 5, 32, 33, 13, 34, 1, 35, 36, 14, 37, 38, 15, 39, 6, 40, 41, 16, 42, 43, 17, 44, 7, 45, 46, 18, 47, 3, 48, 49, 19
Offset: 1
Keywords
Examples
The fractal sequence f(n) of a dispersion D={d(g,h,)} is defined as follows. For each positive integer n there is a unique (g,h) such that n=d(g,h) and f(n)=g. So f(6)=2 because the row of the Fraenkel array in which 6 occurs is row 2.
References
- Clark Kimberling, The equation (j+k+1)^2-4*k=Q*n^2 and related dispersions, Journal of Integer Sequences 10 (2007, Article 07.2.7) 1-17.
Links
- N. J. A. Sloane, Classic Sequences.
Crossrefs
Cf. A038150.
Programs
-
Mathematica
num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]]; left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n]; fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@ FixedPoint[left[#, b] &, n]; Table[fractal[n, Table[Fibonacci[2 i], {i, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *) Table[Ceiling[NestWhile[Ceiling[#/GoldenRatio^2] - 1 &, n, Ceiling[#/GoldenRatio] == Ceiling[(# - 1)/GoldenRatio]&]/ GoldenRatio], {n, 30}] (* Birkas Gyorgy, Apr 15 2011 *)
Comments