This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120890 #23 Aug 28 2022 08:39:57 %S A120890 3,5,7,9,11,13,15,15,17,19,21,21,23,25,27,29,31,33,33,35,35,37,39,39, %T A120890 41,43,45,45,47,49,51,51,53,55,55,57,57,59,61,63,63,65,65,67,69,69,71, %U A120890 73,75,75,77,77,79,81,83,85,85,87,87,89,91,91,93,93,95,95,97,99,99,101,103 %N A120890 Ordered odd leg of primitive Pythagorean triangles. %C A120890 Ordered union of A081874 and A081934. %C A120890 Conjecture: lim_{n->oo} a(n)/n = 1/Pi. Limit is also conjectured to be equal to lim_{n->oo} A120427(n)/n, see Selle reference, chapter 2.3.10. - _Lothar Selle_, Jun 21 2022 %D A120890 Lothar Selle, Kleines Handbuch Pythagoreische Zahlentripel, Books on Demand, 4th impression 2022, chapter 2.2.1., see chapter 2.3.10 for identity of lim_{n->oo} A120427(n)/n. %H A120890 Ray Chandler, <a href="/A120890/b120890.txt">Table of n, a(n) for n = 1..10000</a> %H A120890 D. N. Lehmer, <a href="http://www.jstor.org/stable/2369728">Asymptotic evaluation of certain totient sums</a>, Amer. J. Math. 22, 293-335, 1900. %H A120890 F. Richman, <a href="http://math.fau.edu/Richman/mla/pythag3s.htm">Pythagorean Triangles</a> %Y A120890 Cf. A061346, A081874, A081934, A120891. %Y A120890 Cf. A120427. %K A120890 nonn %O A120890 1,1 %A A120890 _Lekraj Beedassy_, Jul 12 2006 %E A120890 Corrected by _T. D. Noe_, Oct 25 2006