This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A120903 #9 Jan 03 2021 15:31:02 %S A120903 1,1,1,-1,2,1,7,-3,3,1,-61,28,-6,4,1,751,-305,70,-10,5,1,-11821,4506, %T A120903 -915,140,-15,6,1,226927,-82747,15771,-2135,245,-21,7,1,-5142061, %U A120903 1815416,-330988,42056,-4270,392,-28,8,1,134341711,-46278549,8169372,-992964,94626,-7686,588,-36,9,1,-3975839341,1343417110 %N A120903 Triangle T, read by rows, that satisfies matrix equation: T + (T-I)^2 = C, where C is Pascal's triangle. %C A120903 Column 0 is signed A048287, which is the number of semiorders on n labeled nodes. %F A120903 E.g.f. A(x,y) satisfies: A(x,y) + [A(x,y) - exp(x*y)]^2 = exp(x+x*y). %F A120903 Explicitly, e.g.f.: A(x,y) = exp(x*y)*(1 + sqrt(4*exp(x)-3))/2. %F A120903 E.g.f. of column 0: (1 + sqrt(4*exp(x)-3))/2. %F A120903 T(n,k) = -(-1)^(n-k)*A048287(n-k)*C(n,k) + 2*0^(n-k). %F A120903 Matrix square: [T^2](n,k) = ( C(n,k) + 2*T(n,k) - 0^(n-k) )/2. %e A120903 Triangle T begins: %e A120903 1; %e A120903 1, 1; %e A120903 -1, 2, 1; %e A120903 7, -3, 3, 1; %e A120903 -61, 28, -6, 4, 1; %e A120903 751, -305, 70, -10, 5, 1; %e A120903 -11821, 4506, -915, 140, -15, 6, 1; %e A120903 226927, -82747, 15771, -2135, 245, -21, 7, 1; %e A120903 -5142061, 1815416, -330988, 42056, -4270, 392, -28, 8, 1; %e A120903 The matrix square of T less the diagonal is (T-I)^2: %e A120903 0; %e A120903 0, 0; %e A120903 2, 0, 0; %e A120903 -6, 6, 0, 0; %e A120903 62, -24, 12, 0, 0; %e A120903 -750, 310, -60, 20, 0, 0; %e A120903 11822, -4500, 930, -120, 30, 0, 0; %e A120903 where C = T + (T-I)^2 = 2*T^2 - 2*T + I. %o A120903 (PARI) /* Generated by Recursion T = C - (T-I)^2 : */ {T(n, k)=local(C=matrix(n+1, n+1, r, c, if(r>=c, binomial(r-1, c-1))), M=C); for(i=1, n+1, M=C-(M-M^0)^2 ); return(M[n+1, k+1])} %o A120903 (PARI) /* Generated by E.G.F.: */ {T(n,k)=n!*polcoeff(polcoeff(exp(x*y)*(1 + sqrt(4*exp(x +x*O(x^n))-3))/2,n,x),k,y)} %Y A120903 Cf. A048287 (column 0); A117269 (variant: T - (T-I)^2 = C). %K A120903 sign,tabl %O A120903 0,5 %A A120903 _Paul D. Hanna_, Jul 17 2006